Solusi Persamaan Aljabar Riccati untuk Matriks yang Tak Simetris

Irsad, Irsad (2010) Solusi Persamaan Aljabar Riccati untuk Matriks yang Tak Simetris. Undergraduate (S1) thesis, Universitas Islam Negeri Alauddin Makassar.

[img]
Preview
Teks
19.solusi persamaan aljabar riccati untuk matrix yang.pdf

Download (2MB) | Preview

Abstrak

In this paper Explained algebra Riccati equation XCX-XD-AX +B =0 for which the four coefficient matrices from an M-matrices, K = − − A and D are M-matrices ,such that A= A1 – A2 and D = D1 - D2 where A1 = diag (A) and D1 = diag (D). The solution of algebra Riccati equation by Interation method with initial conditation X0 = 0 ; XK+1 = l-1 ( + + + ) Where the linier operator l -1 is given by: l (X) = X + XD1 the solution of practical interest is nonnegative solution S =Lim Xk≥ Xk +1≥……≥ X2≥ X1≥ X0 = 0 k- Key Words ; Algebra Riccati Equation, M-Matriks, Nonnegative matrices, Nonsymmetric Matrices

Tipe Item: Skripsi/Tesis/Disertasi/Laporan D3 (Undergraduate (S1))
Kata Kunci: Persamaan Aljabar Riccati; M-Matriks; Matriks taknegatif; matriks taksimetri
Subjek: 500 Ilmu-Ilmu Murni > 512 Aljabar
Lembaga/Fakultas/Jurusan: Fakultas Sains dan Teknologi > Matematika
Depositing User: Sri Wahyuni
Date Deposited: 07 Dec 2018 07:25
Last Modified: 07 Dec 2018 07:25
URI: http://repositori.uin-alauddin.ac.id/id/eprint/10919

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year