PENENTUAN NILAI TEBUS DAN CADANGAN PADA ASURANSI JIWA DWIGUNA BERJANGKA

SKRIPSI

Diajukan untuk Memenuhi Salah Satu Syarat Meraih Gelar Sarjana Matematika (S.Mat.) pada Prodi Matematika Fakultas Sains dan Teknologi UIN-Alauddin Makassar

Oleh:

SITTI NURBAYA NIM: 60600112054

JURUSAN MATEMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI ALAUDDIN
MAKASSAR
2019

PERNYATAAN KEASLIAN SKRIPSI

Dengan penuh kesadaran, penyusun yang bertanda tangan di bawah ini menyatakan bahwa skripsi ini benar adalah hasil karya penyusun sendiri. Jika di kemudian hari terbukti bahwa ia merupakan duplikat, tiruan, plagiat, atau dibuat oleh orang lain, sebagian atau seluruhnya, maka skripsi dan gelar yang diperoleh karenanya batal demi hukum.

Samata, Agustus 2019

Penyusun,

SITTI NURBAYA NIM: 60600112054

PENGESAHAN SKRIPSI

Skripsi yang berjudul "Penentuan Nilai Tebus dan Cadangan pada Asuransi Jiwa Dwiguna Berjangka", yang disusun oleh Saudari **Sitti Nurbaya**, Nim: 60600112054 Mahasiswa Jurusan Matematika pada Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Alauddin Makassar, telah diuji dan dipertahankan dalam sidang *munaqasyah* yang diselenggarakan pada hari Jumat tanggal 23 Agustus 2019 M, bertepatan dengan 22 Dzulhijjah 1440 H, dinyatakan telah dapat diterima sebagai salah satu syarat untuk memperoleh gelar Sarjana Matematika (S.Mat).

 ${\bf Makassar}, \frac{{\it 23 Agustus 2019 M}}{{\it 22 Dzulhijjah 1440 H}}$

DEWAN PENGUJI

Ketua : Prof. Dr. Muh. Halifah Mustami, M.Pd

Sekretaris : Risnawati Ibnas, S.Si., M.Si.

Munaqisy I : Ilham Syata, S.Si., M.Si.

Munaqisy II : Adnan Sauddin, S.Pd., M.Si.

Pembimbing I: Wahidah Alwi, S.Si., M.Si.

Pembimbing II : Sri Dewi Anugrawati, S.Pd., M.Sc.

Diketahui oleh:

Dekan Eakultas Sains dan Teknologi

JHN Alauddin Makassar

Prof. or. Muhammad Halifah Mustami, M.Pd

Nip. 19710412 200003 1 001

KATA PENGANTAR

Allah Swt, Tuhan semesta alam atas segala nikmat iman dan nikmat kesehatan serta Rahmat-Nyalah sehingga skripsi yang berjudul "Penentuan Nilai Tebus dan Cadangan Pada Asuransi Jiwa Dwiguna Berjangka" dapat diselesaikan. Salam dan shalawat dicurahkan kepada Rasulullah Muhammad SAW. beserta para keluarga, sahabat dan para pengikutnya yang senantiasa istiqamah dijalan-Nya.

Skripsi ini disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Matematika (S.Mat) pada Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar. Untuk itu, penulis menyusun skripsi ini dengan mengerahkan semua ilmu yang telah diperoleh selama proses perkuliahan. Tidak sedikit hambatan dan tantangan yang penulis hadapi dalam menyelesaikan penulisan skripsi ini. Namun, berkat bantuan dari berbagai pihak terutama do'a dan dukungan yang tiada hentinya dari kedua orang tua tercinta, kakak-kakak tersayang serta sahabat rempong yang selalu setia memberikan bantuan dan semangat selama proses penelitian dan penyusunan skripsi.

Ucapan terima kasih yang tulus serta penghargaan yang sebesar-besarnya penulis sampaikan kepada **Ibu Wahidah Alwi, S.Si.,M.Si**. Pembimbing I dan Pembimbing Akademik, serta **Ibu Sri Dewi Anugrahwati, S.Pd.,M.Sc** Pembimbing II,atas waktu yang selalu diluangkan untuk memberikan bimbingan

dan sumbangsih pemikirannya dalam proses penyusunan skripsi ini. Penulis juga mengucapkan banyak terima kasih kepada :

- Bapak Prof. H. Hamdan Juhannis, M.A., Ph.D Rektor Universitas Islam Negeri Alauddin Makassar.
- 2. Bapak Prof. Dr. Muh. Halifah Mustami, S.Ag.,M.Pd Dekan Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar, para wakil dekan, dosen pengajar beserta seluruh staf/pegawai atas bantuannya selama penulis mengikuti pendidikan di Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar.
- 3. Bapak Irwan S.Si.,M.Si Ketua jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar beserta seluruh dosen pengajar dan staf jurusan, atas segala bantuannya kepada penulis.
- 4. Ibu Wahidah Alwi, S.Si., M.Si., Sekretaris Jurusan Sains Matematika Fakultas Sains dan Teknologi, Universitas Islam Negeri Alauddin Makassar, sekaligus sebagai pembimbing I, yang telah bersedia meluangkan waktu untuk membimbing, memberi saran dan kritikan untuk kesempurnaan penyusunan skripsi ini.
- Tim Penguji bapak Ilham Syata, S.Si., M.Si Penguji I, Adnan Sauddin, S.Pd.,M.Si Penguji II atas bimbingan dan sarannya dalam penulisan skripsi ini.
- Bapak / Ibu pada Staf dan Pengajar Fakultas Sains dan Teknologi, Universitas
 Islam Negeri Alauddin Makassar, yang telah memberikan do'a dan dorongan

- moral serta perhatian dan kasih sayang yang diberikan kepada penulis dalam menyelesaikan skripsi ini.
- 7. Seluruh Civitas Akademik Fakultas Sains dan Teknilogi, Universitas Islam Negeri Alauddin Makassar, yang telah memberikan dorongan moral serta perhatian dan kasih sayang yang diberikan kepada penulis dalam menyelesaikan skripsi ini
- 8. Teman–teman Kurva pada khususnya yang sama–sama berjuang mulai dari awal perkuliahan hingga dalam menyelesaikan penulisan skripsi ini.
- Teman-teman kelas B, terutama Hasrullah, Rizqi Oktaviani, Riski Maharani,
 Suriani M, Magfirah Rasak, Umar, Amirul Mu'minin, dan adik-adik yang
 selama ini membantu dan memberi dorongan moral kepada penulis untuk
 meyelesaikan skripsi ini.
- 10. Terkusus kepada kedua orang tuaku ayah Alm.Abd Gaffar yang semasa hidup selalu memberi semangat dan dukungan dalam pendidikan, kepada ibuku Aminah yang tak habis-habisnya mendoakan kesuksesan anak-anaknya yang jadi malaikat di duniaku tak pernah ada kata lelah dari mulutnya ketika diriku begitu banyak menumpukkan beban di pundaknya, maafkan anakmu karna sampai sekarang belum bisa membanggakanmu, kepada Suamiku Bisman S.Hi terimakasih sudah jadi suami yang begitu sabar dan pengertian, untuk buah hatiku tercinta Muh Fahri Alfatih yang selama penyelesaian ini mulai dari kandungan selalu menemani, dan pada saat setelah lahiran selama beberapa bulan ibu sibuk maafkan ibu karena dirimu kurang kasih sayang dari ibumu anaku karena, ibu harus menyelesaikan studi. Terimakasih juga buat

saudara-saudaraku dan mertua yang selalu memberi dukungan untuk penyelesaian ini

Penulis menyadari bahwa skripsi ini masih jauh dari kesempurnaan, oleh karena itu, kritik dan saran yang bersifat membangun untuk kesempurnaan skripsi ini sangat diharapkan. Akhir kata, penulis berharap semoga Allah swt. membalas segala kebaikan semua pihak yang telah membantu dalam penyelesaian skripsi ini. Semoga skripsi ini membawa manfaat bagi kita semua dan terutama pengembangan ilmu pengetahuan. Aamiin

Samata, Agustus 2019

Penulis

NIM. 60600112054

DAFTAR ISI

HALAM	IAN JUDUL	i
LEMBA	R PENGESAHAN	ii
KATA P	PENGANTAR	iii-vi
DAFTA	R ISI	vii-vii
DAFTA	R SIMBOL	ix-x
ABSTRA	AK	Xi
BAB I	PENDAHULUAN	1-6
	A. Latar Belakang	1
	B. Rumusan Masalah	5
	C. Tujuan Penelitian	5
	D. Manfaat Penelitian	5
	E. Batasan Masalah	6
	F. Sistematika Penulisan	ϵ
BAB II	TINJAUAN PUSTAKA	7-27
	A. Asuransi	7
	B. Asuransi dalam Islam	8
	C. Asuransi Jiwa	11
	D. Asuransi Jiwa yang dibayarkan Akhir Tahun Kematian	13
	E. Anuitas	18
	F. Premi	19
	G. Cadangan Premi	23
	H. Nilai Tebus	25
BAB III	METODELOGI PENELITIAN	26-27
	A. Jenis Penelitian	26
	B. Lokasi dan Waktu Penelitian	26
	C. Jenis dan Sumber Data	26
	D. Variabel dan Defenisi Variabel Penelitian	26
	E. Prosedur Penelitian	27
BAB IV	HASIL DAN PEMBAHASAN	28-39

	A. Hasil Penelitian	28
	B. Pembahasan	38
BAB V	PENUTUP	40
	A. Kesimpulan	40
	B. Saran-saran	40
DAFTAR PUSTAKA		41-42
LAMPIR	AN	
RIWAYA	AT HIDUP	

DAFTAR SIMBOL

x : usiapemegang polisdariperempuan.

i :tingkatsukubunga.

n :lamapenanggungan.

d :faktordiskonto.

s(x) : fungsi survival

s(x + n) : fungsihidupx mencapai x + n.

T(x) : sisausiahidupdarix.

 $_{n}p_{x}$: peluang x hidupmencapai x + n tahun.

 $_nq_x$: peluangxmeninggalsebelumberusiax + n tahun.

 $_nd_x$: jumlah orang meninggalantarausiax dan x + n.

 l_x : jumlahorang yang berusiax tahun.

 v^x : nilai tunai pembayaran yang berusia x tahun.

 v^{x+1} : nilai tunai pembayaran yang berusiax + 1 tahun.

 D_x : komutasidarinilai v^x dengan l_x .

 C_x : komutasidarinilai v^{x+1} dengan d_x .

 N_x : komutasinilaiakumulasi D_{x+k} dengank = 0 sampai w.

 M_x :komutasinilaiakumulasi C_{x+k} dengank = 0 sampai w.

 \ddot{a}_{n1} ; : nilaitunaianuitastentuawalberjangkan tahun...

 a_{n1} : nilaitunaianuitastentuanuitasakhirberjangkan tahun.

 $\ddot{a}_{x:n}$: nilaitunaianuitashidupawalberjangkan tahun.

 $\ddot{a}_{x:m}^{(c)}$: nilai tunai anuitas hidup dibayar c kali dalam setahun

 $_{n}P(A_{x:m]})$: premi bersih tahunan

 $_{\mathsf{n}}P^{(c)}ig(A_{x:m}ig)$: premi bersih bulanan

 $P_{\overline{x:m}}^{\underline{D}}$: premi yang disesuaikan untuk asuransi jiwa *endowmend*

berjangka

 P_{χ}^{D} :Premi untuk nilai tebus

A : uang yang dibayarkan perorangnya.

 $A_{x:n}^1$: premi tunggal asuransi berjangkan tahun.

 $A_{x:n}$: premi tunggal asuransi jiwa dwiguna murni berjangka n tahun.

Q : jumlah santunan.

 Q_x : jumlahpertanggungan yang diterimay.

 $_{n}V$: jumlah cadangan dalam n tahun.

 $_{t}NT_{x}$: nilai tebus

ABSTRAK

Nama: Sitti Nurbaya NIM: 60600112054

Judul: Penentuan Nilai Tebus dan Cadangan Pada Asuransi Jiwa Dwiguna

Berjangka

Dalam perkembangan zaman, ternyata tingkat kesadaran masyarakat akan asuransi masih rendah, masih banyak yang belum memiliki asuransi padahal asuransi merupakan hal yang patut di perhitungkan untuk masa depan. Jika sewaktu-waktu kejadian buruk menimpa diri sendiri dan keluarga, antisipasi untuk kejadian tak terduga, untuk menyusun rencana masa depan atau risiko-risiko yang sangat umum seperti kematian, kecelakaan, cacat dan sakit yang tentu tidak diinginkan oleh siapapun juga. Risiko-risiko tersebut adalah bagian dari musibah yang berasal dari Allah sebagai ujian. Oleh sebab itu untuk mengatasinya manusia di tuntut untuk merencanakan masa depan dengan baik.

Ada beberapa alasan mengapa nilai tebus harus lebih kecil dari cadangan premi seperti, pada waktu polis dianggap batal belum tentu seluruh biaya telah terbayar lunas oleh pemegang polis, ada kecenderungan orang yang menghentikan kontraknya atau pemegang polis kesehatannya lebih baik dari yang meneruskan, Jika pembatalan polis merupakan kejadian yang sering terjadi maka perusahaan akan terpaksa selalu menyediakan dana tunai di kas untuk membayar nilai tebus singga dana investasi berkurang dan hasil investasipun berkurang.

Berdasarkan tujuan dari skripsi ini, dapat disimpulkan bahwa besarnya cadangan premi dengan menggunakan metode perhitungan prospektif yang dibayar oleh pemegang polis yang berusia 30 tahun pada akhir tahun ke-4 dengan santunan sebesar Rp.20.000.000 adalah *Rp*. 5.363.620,86 dan nilai tebus yang dibayarkan oleh perusahaan asuransi yang berusia 30 tahun pada akhir tahun ke-4 dengan santunan Rp.20.000.000 adalah sebesar *Rp*. 3.613.977,96

Kata Kunci: Nilai Tebus, cadangan premi, Asuransi Jiwa Berjangka

BABI

PENDAHULUAN

A. Latar Belakang

Dalam perkembangan zaman, ternyata tingkat kesadaran masyarakat akan asuransi masih rendah, masih banyak yang belum memiliki asuransi padahal asuransi merupakan hal yang patut di perhitungkan untuk masa depan. Jika sewaktu-waktu kejadian buruk menimpa diri sendiri dan keluarga, antisipasi untuk kejadian tak terduga, untuk menyusun rencana masa depan atau risiko-risiko yang sangat umum seperti kematian, kecelakaan, cacat dan sakit yang tentu tidak diinginkan oleh siapapun juga. Risiko-risiko tersebut adalah bagian dari musibah yang berasal dari Allah sebagai ujian. Oleh sebab itu untuk mengatasinya manusia di tuntut untuk merencanakan masa depan dengan baik. Sebagaimana di sebutkan dalam Q.S. Yusuf (12:47):

Terjemahannya:

Yusuf berkata: "Supaya kamu bertanam tujuh tahun (lamanya) sebagaimana biasa; maka apa yang kamu tuai hendaklah kamu biarkan dibulirnya kecuali sedikit untuk kamu makan

Maksud dari ayat di atas Nabi Yusuf memerintahkan kamu wahai masyarakat Mesir melalui raja agar kamu terus menerus bercocok tanam selama tujuh tahun sebagaimana biasa kamu bercocok tanam, yakni dengan memperhatikan cuaca, jenis tanaman yang ditanam, pengairan dan sebainya, atau selama tujuh tahun berturut-turut dengan bersungguh-sungguh. Maka apa yang

kamu tuai dari hasil panen sepanjang masa itu hendaklah kamu biarkan dibulirnya agar dia tetap segar tidak rusak. ¹

Dalam menghadapi peristiwa yang menjadi musibah dalam kehidupan. Manusia harus mempersipkan diri salah satunya dengan mengasuransikan jiwa mereka. Asuransi jiwa bertujuan untuk menanggung jiwa seseorang yang di asuransikan kepada pihak perusahaan asuransi sebagai pihak penanggung terhadap kerugian financial tak terduga yang di alami pihak tertanggung nasabah pemegang polis *insurance*. Dalam perjanjian asurasi jiwa pembayaran premi biasanya dapat di lakukan sekaligus atau secara periodic yaitu, tahunan, setengah tahun, triwulan, dan bulanan.

Namun tidak semua pemegang polis akan meneruskan kontraknya, beberapa di antaranya menghentikan pembayaran premi dengan berbagai alasan. Ada yang menghentikannya karena merasa tidak lagi membutuhkannya atau tidak mampu lagi membayar preminya. Akan tetapi seseorang yang dalam kondisi sakit ataupun mampu yang punya rencana masa depan untuk diri dan keluarga akan merasakan pentingnya jasa asuransi, sehingga dia akan tetap meneruskan pembayaran preminya. Hal ini tentu membuat perbedaan apabila seseorang tidak meneruskan kontraknya, untuk umur yang sama. Yang tinggal meneruskan kontrak akan lebih banyak nilai tebusnya di banding dengan yang tidak meneruskan kontrak polisnya, ini di karenakan biasanya perusahaan cukup banyak mengeluarkan biaya untuk polis tersebut. Mengembalikan seluruh premi yang

_

¹ M.Qurais shihab"*Tafsir Al-Misbah Pesan, kesan dan keserasian Al-Qur'an"*. Hal.471-472. Vol 6

telah diterima perusahaan berarti akan merugikan perusahaan. Nilai yang di kembalikan itu di maksud nilai tebus.

Menurut pasal 14 ayat 1 PP No.73 Tahun 1992 tentang penyelenggara perusahaan peransuransian, perusahaan asuransi harus membentuk cadangan teknis asuransi yang di selenggarakan. Cadangan premi pada asuransi jiwa adalah cadangan premi. Nilai tebus lebih kecil dari cadangan premi.²

Ada beberapa alasan mengapa nilai tebus harus lebih kecil dari cadangan premi seperti, pada waktu polis dianggap batal belum tentu seluruh biaya telah terbayar lunas oleh pemegang polis, ada kecenderungan orang yang menghentikan kontraknya atau pemegang polis kesehatannya lebih baik dari yang meneruskan, Jika pembatalan polis merupakan kejadian yang sering terjadi maka perusahaan akan terpaksa selalu menyediakan dana tunai di kas untuk membayar nilai tebus sehingga dana investasi berkurang dan hasil investasipun berkurang.

Hal tersebut menunjukkan bahwa nilai tebus haruslah lebih kecil dari cadangan premi bersih. Perhitungan nilai tebus dapat dikerjakan mengikuti cara perhitungan premi tapi dengan menggunakan table mortalita yang lebih baik, tingkat bunga yang berbeda biayanya lebih rendah dan perhitungan biaya-biaya yang belum lunas.

Penelitian yang telah dilakukan oleh Asri nurul Fajriani,dkk dalam jurnal dengan hasil penelitian menggunakan asuransi jiwa *continue* diperoleh pada asuransi jiwa seumur hidup dan asuransi jiwa berjangka nilai tebus pada awal permulaan tahun bernilai negatif, sedangkan pada asuransi jiwa *endowment* nilai

3

²Peraturan Pemerintah Republik Indonesia Nomor 73 Tahun 1992, "*Tentang Penyelengaraan Usaha Peransurasian*".hal 6

tebus lebih kecil dari premi, hal ini disebabkan pada permulaan tahun uang yang dibayarkan sudah digunakan untuk kebutuhan administrasi perusahaan asuransi tersebut. Pada asuransi jiwa seumur hidup cadangan akhir tahun dari tahun ke tahun semakin besar, tetapi pada akhir jangka waktu polis cadangan akhir tahun bernilai nol. asuransi jiwa berjangka cadangan akhir tahun dari tahun ke tahun semakin besar, tetapi pada saat sudah tidak ada pembayaran premi cadangan akhir tahun dari tahun ke tahun semakin kecil bahkan pada akhir jangka waktu polis cadangan akhir tahun bernilai nol. Dengan kata lain, jika sampai akhir jangka waktu asuransi tertanggung masih hidup (tidak meninggal), maka tidak mendapat santunan. Sedangkan pada asuransi endowment cadangan akhir tahun dari tahun ke tahun semakin besar, dan pada akhir jangka waktu polis cadangan akhir tahun bernilai sama dengan santunan. Dengan kata lain, jika sampai akhir jangka waktu tertanggung masih hidup (tidak meninggal), maka tertanggung akan mendapat santunan. Nilai tebus pada contoh kasus lebih kecil dari cadangan premi. Tetapi pada saat sudah tidak ada pembayaran premi, nilai tebus sama dengan cadangan premi.³

Sebagai pengembangan dari tulisan tersebut, penulis memilih untuk menntukan kasus yang terjadi pada asuransi jiwa *endowment* dengan pembayaran diskrit

Berdasarkan pada rangkaian pemikiran di atas, maka penelitian kali ini akan dikaji perbandingan nilai tebus dan cadangan premi pada asuransi jiwa dwiguna berjangka

³Asri Nurul Fajriani, dkk, "Perbandingan Nilai Tebus Dan Cadangan Premi Pada Asuransi Jiwa Kontinu, jurnal mat (2012) hal. 2

B. Rumusan Masalah

Rumusan masalah dalam penelitian ini adalah

- 1. Seberapa besar nilai tebus pada asuransi jiwa dwiguna berjangka?
- 2. Seberapa besar nilai cadangan premi pada asuransi jiwa dwiguna berjangka?

C. Tujuan Penilitian

Adapun tujuan dari penelitian ini adalah untuk mendapatkan besaran nilai tebus dan cadangan pada asuransi jiwa dwiguna berjangka.

D. Manfaat Penelitian

Manfaat yang dapat diperoleh dari penulisan tugas akhir ini adalah:

1. Bagi penulis

Manfaat yang dapat diperoleh adalah dapat menambah ilmu khususnya mata kuliah asuransi dalam menentukan perbandingan nilai tebus dan cadangan premi pada asuransi jiwa.

2. Bagi Pembaca

Penulisan ini diharapkan dapat menjadi sumber referensi khususnya mata kuliah asuransi.

 Bagi instansi, penelitian ini memberikan masukan mengenai nilai tebus dan cadangan premi

E. Batasan Masalah

Agar penulisan proposal ini tidak menyimpang dan mengembang dari tujuan yang semula direncanakan sehingga mempermudah mendapat data dan informasi yang diperlukan, maka penulis menetapkan batasan-batasan sebagai berikut:

- 1. Asuransi jiwa yang digunakan adalah asuransi jiwa dwiguna berjangka diskrit.
- 2. Metode perhitungan cadangan yang digunakan adalah metode prospektif.
- 3. Tabel Mortalita yang digunakan adalah Tabel Mortalita 2011.

F. Sistematika Penulisan

Untuk memperoleh gambaran menyeluruh mengenai rancangan isi karya tulis ini, secara umum dapat dilihat dari sistematka penulisan di bawah ini :

BAB I. PENDAHULUAN

Bagian ini merupakan bab pendahuluan yang berisi latar belakang, rumusan masalah, tujuan penelitian, batasan masalah, manfaat penelitian dan sistematika penulisan.

BAB II TINJAUAN PUSTAKA

Bagian ini akan diuraikan dan dibahas mengenai pengertian-pengertian yang menyangkut masalah asuransi dan nilai tebus asuransi jiwa dwiguna berjangka dan hal-hal yang berkaitan dengan karya tulis.

BAB III METODOLOGI PENELITIAN

Bagian ini merupakan bab Metodologi penelitian yang berisi jenis penelitian, jenis dan sumber data, waktu dan lokasi penelitian, defenisi operasional variabel, Teknik pengumpulan data dan prosedur penelitian.

BAB IV HASIL DAN PEMBAHASAN

Bagian ini berisi hasil dan pembahasan.

BAB V PENUTUP

Bagian ini merupakan bab penutup yang berisi kesimpulan dan saran DAFTAR PUSTAKA

BAB II

TINJAUAN PUSTAKA

A. Asuransi

Dalam pandangan matematika, asuransi merupakan aplikasi matematika dalam memperhitungkan biaya dan faedah pertanggungan *risiko*. Hukum probabilitas dan teknik statistik dipergunakan untuk mencapai hasil yang dapat diramalkan.

Pengertian asuransi menurut undang-undang tentang usaha perasuransian (UU Republik Indonesia No. 2/1992) adalah sebagai berikut :

Asuransi atau pertanggungan adalah perjanjian antara dua pihak atau lebih yang pihak penanggung mengikatkan diri kepada tertanggung dengan menerima premi asuransi untuk memberikan penggantian kepada tertanggung karena kerugian, kerusakan atau kehilangan keuntungan yang diharapkan, atau tanggung jawab hukum kepada pihak ketiga yang mungkin akan diderita tertanggung, yang timbul akibat suatu peristiwa yang tidak pasti, atau untuk memberikan suatu pembayaran yang didasarkan atas meninggal atau hidupnya seseorang yang dipertanggungkan. Yang dimaksud "penanggung" dalam definisi ini adalah suatu badan usaha asuransi yang memenuhi ketentuan UU No. 2/1992.⁴

Fungsi utama dari asuransi adalah sebagai mekanisme mengalihkan *risiko* (*risk transfer mecanisme*), yaitu mengalihkan *risiko* dari suatu pihak (tertanggung) kepada pihak lain (penanggung). Pengalihan *risiko* ini tidak berarti menghilangkan kemungkinan *misfortune*, melainkan pihak penanggung

⁴Herman Darmawi, *Manajemen Asuransi*, (Jakarta:Bumi Aksara,2000), h.3-4.

menyediakan pengamanan finansial (*financial security*) serta ketenangan (*peace of mind*) bagi tertanggung.⁵

B. Asuransi dalam Islam

Dengan di dasarkan pada sebuah asumsi awal yang menjelaskan bahwa dalam ajaran Islam telah sempurna dan mempunyai nilai yang universal serta mencakup seluruh aspek hidup dan kehidupan manusia, maka segala sesuatu yang berkaitan dengan kehidupan manusia telah di jamin adanya norma yang mengatur aktivitas kehidupan tersebut.

Manusia mempunyai sifat lemah dalam menghadapi kejadian yang akan datang.sifat lemah tersebut berbentuk ketidaktahuannya terhadap kejadian yang akan menimpa pada dirinya. Manusia tidak dapat memastikan bagaimana keadaannya pada waktu di kemudian hari (future time).

Allah swt tidak memberikan kepada manusia untuk mengetahui secara pasti mengenai ajalnya. Kemampuan yang di berikan kepada manusia hanya sebatas memprediksi dan merencanakan sesuatu yang belum terjadi serta memproteksi segala sesuatu yang di rasa akan memberikankerugian di masa mendatang. Suatu yang menjadi ketetapan-Nya adalah ajal (kematian)yang akan di alami setiap manusia.⁶

Dalam bahasa Arab, asuransi dikenal dengan istilah *at-ta'min*, penanggung disebut *mu'ammin*, tertanggung disebut *mu'amma*n lahu atau *musta'min*. *At-ta'min* di ambil dari amana yang artinya memberi perlindungan, ketenangan, rasa aman dan bebs dari rasa takut.

⁵Faihatuz Zuhairo, Diklat Kuliah Matematika Asuransi, (2012), h.1

⁶ Hasan Ali, *Asuransi dalam perspektif hukum Islam*,h.97-102.

Pengertian dari *at-ta'min* adalah seseorang membayar/menyerahkan uang cicilan untuk agar ia atau ahli warisnya mendapat sejumlah uang sebagaimana yang telah disepakati, atau untuk mendapat ganti terhadap hartanya yang hilang.

Mustafa Ahmad Az-Zarqa memaknai asuransi adalah suatu cara atau metode untuk memelihara manusia dalam menghindari *Risiko* bahaya yang beragam yang akan terjadi dalam hidupnya, dalam perjalanan kegiatan hidupnya, dalam perjalanan kegiatan hidupnya atau dalam aktivitas ekonominya. Ia berpendapat bahwa sistem asuransi adalah sistem *ta'awun* dan tadhamun yang bertujuan untuk menutupi kerugian peristiwa-peristiwa atau musibah-musibah oleh sekelompok tertanggung kepada orang yang tertimpa musibah tersebut. Penggantian tersebut berasal dari pemi mereka.⁷

Prinsip dasar yang ada dalam asuransi syariah tidak jauh berbeda dengan prinsip dasar yang berlaku pada konsep ekonomi Islami secaraa konprehensif dan bersifat mojor. Hal ini disebabkan karena kajian asuransi syariah merupakan turuna (minor)dari sifat ekonomika Islam. Biasanya literatur ekonomika islami selalu melakukan penurunaan nilai pada tataran konsep atau institusi yang ada dalam lingkup kajiannya, sepperti lembaga perbangkan dan asuransi.

Begitu juga dengan asuransi, harus di bangun di atas fondasi dan prinsip dasar yang kuat serta kokoh. Dalam hal ini, prinsip dasar asuransi syariah diantarany yaitu;⁸

_

⁷ Wirdyningih,et al, *Bank dan Asuransi Islm di Indonesia* (jakarta:Kencana,2005),h.177.

⁸ Hasan Ali, *Asuransi dalam Perspektif Islam*,h.125.

1. Tauhid

Prinsip tauhid (*unity*) adalah dasar utama dari setiap bentuk bangunaan yang ada dalam syariah islam, setiap bangunan dan aktivitas kehidupan manusia harus didasarkan pada nilai-nilai tauhid. Artinya bahwa setiap setiap gerak langkah serta bangunan hukum harus mencerminkan nilai-nilai ketuhanan.

2. Keadilan

Prinsip kedua dalam berasuransi adalah terpenuhinya nilai-nilai keadilan (*justice*) antara pihak-pihak yang terkait dengan akad asuransi. Keadilan dalam hal ini di pahami sebagai upaya dalam menempatkan hak dan kewajiban antara nasabah (anggota) dan perusahaan asuransi. Keuntungan yang dihasilkan oleh perusahaan asuransi dari hasil investasi dana nasabah haruslah dibagi sesuai dengan akad yang di sepakati sejak awal.

3. Tolong menolong

Prinsip dasar yang lain dalam melaksanakan kegiatan berasuransi harus di dasari dengan semangat tolong menolong (*ta'awun*) antara anggota (nasabah). Seseorang yang masuk asuransi sejak awal harus mempunyai niat dan motivasi untuk membantu dan meringankan beban temannya yang pada suatu ketika mendapat musibah atau kerugian.

4. Amanah

Prinsip amanah dalam organisasi perusahaan dapat terwujud dalam nilai-nilai akuntabilitas (penanggung jawaban) perusahaan melalui penyajian laporan keuangan tiap periode. Dalam hal ini perusahaan asuransi harus memberi kesempatan yang besar bagi nasabah untuk mengakses laporan keuangan

perusahaan. Laporan keuangan yang di keluarkan oleh perusahaan asuransi harus mencerminkn nilai-nilai kebenaran dan keadilan dalam bermuamalah dan melalui auditor publik.

Konsep dasar perasuransian dalam Islam di Indonesia, tidak terlepas dari perilaku umat islam dalam memandang kelembagaan-kelembagaan yang ada untuk kegiatan muamalahnya. Dari pengamatan terdapat perkembangan industri asuransi di Indonesia, tampak bahwa baik pertumbuhan industri ini maupun risiko pemegang polis asuransi dibandingkan jumlah penduduk Indonesia masih jauh di bawa kemajuan yang di capai negara lain. Beberapa penyebab yang sempat diidentifikasi yaitu adanya keraguan terhadap asuransi konvensional dan adanya peningkatan kesadaran dan penalaran beragama.

C. Asuransi Jiwa

Asuransi jiwa merupakan bentuk kerja sama untuk menghindari atau minimal mengurangi *risiko*. *Risiko-risiko* tersebut adalah :

- 1. *Risiko* kematian, resiko ini pasti terjadi tetapi tidak diketahui kapan terjadi, yaitu bisa karena sakit atau kecelakaan.
- Risiko hari tua, risiko ini dapat diperkirakan kpan terjadi, tetapi tidak diketahui berapa lama terjadi, yaitu merosot atau hilangnya kemampuan menghasilakan.
- 3. *Risiko* kecelakaan, *risiko* ini tidak pasti terjadi tetapi tidak mustahil terjadi.

 Karena ada *risiko* demikian akan timbul kesadaran manusia untuk kerja sama menghindarkan atau minimal mengurangi akibat dari *risiko* tersebut. Kerja

⁹ Wirdyningih,et al, *Bank dan Asuransi Islm di Indonesia* (jakarta:Kencana,2005),h.175-176.

sama ini dikoordinir oleh perusahaan asuransi yang bekerja atas dasar hukum bilangan besar (the law of large number). Prinsip kerja sama itulah yang menjadi dasar bagi perusahaan asuransi untuk menyebarkan risiko kepada orang – orang yang mau bekerja sama. Penyebaran risiko dilakukan dengan memungut iuran dari orang banyak dalam jumlah yang kecil sehingga dalam jangka waktu yang relatif panjang terhimpun dana besar. Dari dana inilah sejumlah uang diberikan sebagai santunan kepada orang yang terkena risiko kematian, hari tua dan kecelakaan. Berdasarkan prinsip kerja sama maka didalam asuransi jiwa terdapat hubungan antar hak dan kewajiban yang dinyatakan dalam besaran yaitu jumlah uang dan jumlah premi. Hubungan ditentukan denga dasar hitungan tingkat kematian (peluang seseorang akan meninggal dalam jangka waktu tertentu), suku bunga uang dan biaya administrasi asuransi.

Beberapa simbol yang digunakan dalam perhitungan asuransi jiwa adalah :

- 1. l_x adalah jumlah orang yang hidup tepat usia x tahun.
- 2. d_x adalah jumlah orang yang meninggal antara x dan x+1 tahun.
- 3. ${}_{n}p_{x}$ adalah peluang seseorang yang berusia x tahun akan hidup mencapai usia x+t tahun, dengan

$${}_{n}p_{x} = \frac{l_{x+n}}{l_{x}}.$$
(2.1)

4. $_{n}q_{x}$ adalah peluang seseorang yang berusia xtahun akan meninggal sebelum usia x+n tahun. 10

¹⁰A. Abbas Salim, Asuransi dan Manajement Risiko, (Jakarta: PT. Raja Grafindo Persada, 2007), h. 1

$${}_{n}q_{x}=1-{}_{n}p_{x} \tag{2.2}$$

D. Asuransi jiwa yang Dibayarkan Pada Akhir Tahun Kematian

Pada kenyataanya, banyak kasus dimana benefit dibayarkan sesaat setelah kematian, dengan menggunakan waktu sisa hidup yang dilambangkan dengan T. Pada kasus asuransi kebanyakan, informasi terbaik tersedia pada distrbusi peluang dari T dalam bentuk tabel mortalita diskret. Dimana waktu usia hidupnya dinyatakan oleh peubah acak K, atau yang biasa disebut dengan curture-future-lifetime. Dengan fungsi benefit yang dilambangkan dengan b_{k+1} dan fungsi diskon V_{k+1} nilai sekarang yang dilambangkan dengan Z_{k+1} adalah:

$$Z_{k+1} = b_{k+1} V_{k+1} (2.3)$$

Dimana peubah acak dari nilai sekarang Z_{k+1} dilambangkan dengan z_t .

Adapun jenis asuransi yang dibayarkan di akhir tahun kematian yaitu :

1. Asuransi jiwa seumur hidup

Asuransi jiwa seumur hidup adalah asuransi secara permanen dimana pembayaran premi setiap tahun sama besarnya (level Premium). Untuk pembayaran premi tersebut ditetapkan sekali di berlaku untuk seumur hidup. Berapa pun meningkatnya risiko premi yang dilunasi oleh pemegang polis tetap saja besarnya sama. Asuransi seumur hidup tidak menyediakan

perlindungan kematian melainkan menggabung perlindungan asuransi dengan gabungan atau elemen akumulasi.

Fungsi manfaat/benefit dan fungsi diskon pada asuransi ini dapat dituliskan sebagai berikut :

Benefit:

$$b_{k+1} = 1 (2.4)$$

Fungsi diskon:

$$v_{k+1} = v^{k+1} (2.5)$$

Present value:

$$z_{k+1} = v^{k+1} (2.6)$$

Jadi APV untuk asuransi jiwa seumur hidup dengan manfaat kematian dibayarkan di akhir tahun kematian adalah sebagai berikut :

$$APV = E[Z] = A_x = \sum_{k=0}^{\infty} V^{k+1} {}_{k} p_x \ q_{x+k}$$
 (2.7)

2. Asuransi jiwa berjangka *n* tahun

Dalam asuransi berjangka n tahun, uang pertanggungan akan dibayarkan bila tertanggung meninggal didalam jangka waktu tertentu yang telah disepakati pada saat penandatanganan polis. Jadi, misalkan usia pada saat penandatangan kontrak adalah x, jika pihak tertanggung meninggal sebelum

x + n tahun maka pihak tertanggung akan dibayarkan benefit/santunan yang telah disepakati. Tetapi, bila hidup melebihi usia x + n tahun maka pihak tertanggung tidak mendapatakan benefit atau santunan.

Fungsi manfaat/benefit dan fungsi diskon pada asuransi ini dapat dituliskan sebagai berikut :

Benefit:

$$b_{k+1} = \begin{cases} 1 & , \ k = 0, 1, \dots, n-1 \\ 0 & , \ k = n, n+1, \dots \end{cases}$$
 (2.8)

Fungsi diskon:

$$v_{k+1} = v^{k+1} (2.9)$$

Present value:

$$z_{k+1} = \begin{cases} v^{k+1} \\ 0, & k = n, n+1 \end{cases}, k=0,1...,n-1$$
 (2.10)

Jadi APV untuk asuransi jiwa berjangka dengan manfaat kematian dibayarkan di akhir tahun kematian adalah sebagai berikut :

$$APV = E[z_{k+1}] = A_{x:n}^{1} = \sum_{k=0}^{n} V^{k+1} {}_{k} p_{x} q_{x+k}$$

$$A_{x:n}^{1} = 1 \left(\frac{vd_{x}}{l_{x}} + \frac{v^{2}d_{x+1}}{l_{x}} + \frac{v^{3}d_{x+2}}{l_{x}} + \dots + \frac{v^{n}d_{x+n-1}}{l_{x}} \right) \left(\frac{v^{x}}{v^{x}} \right)$$

$$= 1 \left(\frac{v^{x+1}d_{x} + v^{x+2}d_{x+1} + v^{x+3}d_{x+2} \cdot d_{y+2} + \dots + v^{x+n}d_{x+n-1}}{v^{x}l_{x}} \right)$$

$$= 1 \left(\frac{c_{x} + c_{x+1} + c_{x+2} + \dots + c_{x+n-1}}{D_{x}} \right)$$

$$E[Z] = A_{x:n}^{1} = \frac{M_{x} - M_{x+n}}{D_{x}}$$
(2.11)

3. Asuransi dwiguna murni (Pure Endowment)

Pure endowment yaitu suatu pembayaran yang dilakukan pada n tahun mendatang bila yang bersangkutan masih hidup.

Fungsi manfaat/benefit dan fungsi diskon pada asuransi ini dapat dituliskan sebagai berikut :

Benefit:

$$b_{k+1} = 1 (2.12)$$

Fungsi diskon:

$$v_{k+1} = \begin{cases} v^{k+1} \\ v^n, k = n, n+1, \dots \end{cases}, k = 0, 1, \dots, n-1$$
 (2.13)

Present value:

$$z_{k+1} = \begin{cases} v^{k+1} \\ v^n, k = n, n+1, \dots, k = 0, 1, \dots, n-1 \end{cases}$$
 (2.14)

Jadi APV untuk asuransi jiwa dwiguna murni berjangka dengan manfaat kematian dibayarkan di akhir tahun kematian adalah sebagai berikut :

APV =
$$E[z_{k+1}] = A_{x:n}^1 = V^n {}_{n}p_x$$

$$A_{x:n}^{1} = 1 \left(v^n \frac{l_{x+n}}{l_x} \right) \left(\frac{v^x}{v^x} \right)$$

$$= 1 \left(\frac{v^{x+n} l_{x+n}}{v^x l_x} \right)$$

$$E[Z] = A_{x:n}^{1} = \frac{D_{x+n}}{D_x}$$
(2)

(2.16)

4. Asuransi dwiguna berjangka (Endowment)

Dwiguna berjangka merupakan gabungan dari asuransi jiwa berjangka dan dana kehidupan dalam polis asuransi dwiguna walaupun sudah habis jangka waktu asuransi, pemegang polis tetap mendapat uang pertanggungan (santunan)

Fungsi manfaat/benefit dan fungsi diskon pada asuransi ini dapat dituliskan sebagai berikut :

Benefit:

$$b_{k+1} = \begin{cases} 1, k = m, m+1, \dots, m+n-1 \\ 0, k = 0, \dots, m-1 \\ k = m+n, \dots \end{cases}$$
 (2.17)

Fungsi diskon:

$$v_{k+1} = v^{k+1} (2.18)$$

Present value:

$$z_{k+1} = \begin{cases} v^{k+1}, k = m, m+1, \dots, m+n-1\\ 0, k = 0, \dots, m-1\\ k = m+n, \dots \end{cases}$$
 (2.19)

Jadi APV untuk asuransi jiwa dwiguna berjangka dengan manfaat kematian dibayarkan di akhir tahun kematian adalah sebagai berikut :

$$APV = E[z_{k+1}] = A_{x:n}^1 + A_{x:n}^1$$
 (2.20)

E. Anuitas

Kata anuitas pada dasarnya berarti pembayaran tahunan, tapi pada penerapannya istilah ini umum digunakan untuk setiap pembayaran periodik, yang pada umunya adalah jumlah yang sama.

a. Anuitas Hidup Diskret

Anuitas hidup diskret menggunakan anuitas awal (due annuity) yang pembayarannya dilakukan setiap awal tahun. Nilai sekarang dari pembayaran anuitas tersebut yang merupakan peubah acak dari Y adalah:

$$Y = \begin{cases} \ddot{a}_{\overline{k+1}|} \\ \ddot{a}_{n|}, k \ge n \end{cases}, 0 \le k < n \tag{2.21}$$

Dapat diperoleh nilai sekarang (*Actuarial Present Value*) untuk anuitas hidup berjangka n tahun :

$$\ddot{a}_{x:n} = E[Y]$$

$$= \sum_{k=0}^{n-1} \ddot{a}_{\overline{k+1}} k p_x q_{x+t} + \ddot{a}_{n} k p_x$$

$$= \sum_{k=0}^{n-1} v^k k p_x$$
(2.22)

F. Premi Asuransi

Dalam asuransi jiwa yang harus diperhatikan ialah penentuan tarif (*rate making*), karena hal tersebut akan menentukan besarnya premi yang akan diterima. Tarif atau premi yang ditetapkan harus bisa menutupi resiko (*claim*) serta biaya-biaya asuransi dan sebagian dari jumlah penerimaan perusahaan (keuntungan).

1. Faktor-faktor yang mempengaruhi premi

1.1 Bunga

Pada saat pemilik polis membayar premi kepada perusahaan asuransi, dana yang berada di perusahaan tidak diam, tetapi bersama dana pemilik polis lainnya dan dana lainnya ditanamkan untuk mendapatkan bunga. Pendapatan bunga ini akan membantu pembebanan premi asuransi jiwa.

Perusahaan asuransi membuat dua asumsi tentang bunga:

a. Di asumsikan bahwa suatu tingkat bunga bersih yang spesifik akan diperoleh dari semua investasi. Keadaan sebenarnya adalah beberapa investasi akan menghasilkan lebih besar daripada tingkat bunga asumsi sedang beberapa investasi lain menghasilkan lebih kecil daripada bunga asumsi, maka perusahaan memilih tingkat bunga rata-rata untuk asumsi dalam perhitungan premi asuransi. Tingkat bunga yang diasumsikan sering nampak cukup rendah dan mempengaruhi tarifpremi secara langsung, tetapi merupakan tingkat bunga yang dijamin untuk pemilik polis. Oleh karena itu, asumsi tingkat bunga harus cukup konservatif.

b. Asumsi yang dibuat oleh perusahaan asuransi adalah bunga yang diperoleh setahun penuh dari setiap premi pemilik polis. Oleh karena itu, harus diasumsikan bahwa semua premi dibayarkan setiap awal tahun.

Karena tidak terdapat dasar yang handal untuk menaksir tingkat bunga atau kecenderungan dimasa mendatang maka perusahaan harus tetap konservatif dalam asumsi tingkat bunga. Tingkat bunga yang diasumsikan merupakan tingkat bunga yang dijanjikan oleh perusahaan pada setiap polis asuransi karena pendapatan investasi pada penanaman premi merupakan pertimbangan kedua dalam perhitungan tarip premi, yaitu makin tinggi tingkat bunga asuransi, makin rendah premi yang dikenakan kepada pemilik polis. ¹¹

2. Faktor-faktor lain pada premi

Pada saat melakukan evaluasi pembelian polis asuransi jiwa oleh perorangan, terdapat factor-faktor lain yang berperang dan kesemuanya mempengaruhi mortalita.

a. Usia

Usia seseorang mempunyai kaitan langsung terhadap mortalita, dan mortalita mempengaruhi langsung pada perhitungan premi. Makin tua tertanggung, makin tinggi resiko kemtiannya.

b. Jenis kelamin

Jenis kelamin calon tertanggung juga mempengaruhi mortalita, karena pengalaman menunjukan, secara rata-rata, kehidupan wanita lebih lama 5 atau 6 tahun dari pada kehidupan laki-laki. Secara statistika, golongan

¹¹Didi Achdijat, *Teknik Pengelolaan Asuransi Jiwa* (Jakarta: Gunadarma, 1993), hal 77.

wanita dianggap mempunyai risiko asuransi yang lebih baik daripada lakilaki dan tarip premi kaum wanita biasanya lebih rendah dari laki-laki.

c. Kesehatan

Faktor lain yang mempengaruhi mortalita adalah kesehatan calon tertanggung, tegasnya, mereka yang tingkat kesehatannya rendah akan dikenakan tarif premi yang lebih tinggi.

d. Jenis pekerjaan

Jenis pekerjaan calon tertanggung juga mempengaruhi mortalita dan mempengaruhi kesehatan dan meningkatkan risiko kematian.

Faktor-faktor yang menjadi perhatian khusus bagi "underwriter" perusahaan asuransi, yang pekerjaannya adalah melakukan evaluasi dan memilah risiko. Bagi calon tertanggung yang menunjukkan adanya risiko yang lebih tinggi daripada normal karena karakteristik pribadinya dikatakan dalam "risiko sub-standard". Dalam keadaan demikian, perusahaan asuransi dapat menolak risiko sub standard yang berarti calon tertanggung ditolak dari liputan asuransi. Tetapi terdapat beberapa cara menghadapi kasus risiko sub standar yaitu dengan melakukan penyesuaian premi untuk menunjukan adanya peningkatan risiko, pendekatan ini dinamakan "rating". 12

1. Premi tunggal (Actuarial Present Value)

Merupakan pembayaran premi asuransi yang dilakukan pada waktu kontrak asuransi disetujui, selanjutnya tidak ada lagi pembayaran. ¹³

a. Premi tunggal asuransi jiwa dwiguna murni (pure Endowment)

21

¹²Didi Achdijat, *Teknik Pengelolaan Asuransi Jiwa* (Jakarta: Gunadarma, 1993), h.78.

¹³Takashi Futami, *Matematika Asuransi bagian 1*,hal.69

$$Z = \begin{cases} 0, K = 0, 1, 2 \dots, n-1 \\ V^{k+t}, k = n, n+1, \dots \end{cases}$$
 (2.23)

dengan premi tunggal (Actuarial Present Value) dinotasikan dengan $A_{x:n]}^1$

$$A_{x:n]}^{1} = V^{n}{}_{n}p_{x} \tag{2.24}$$

b. Premi tunggal asuransi jiwa dwiguna berjangka (Endowment)

$$Z = \begin{cases} V^{k+t}, k = 0, 1, 2 \dots, n-1 \\ V^n, K = n, n+1, \dots \end{cases}$$
 (2.25)

dengan premi tunggal ($Actuarial\ Present\ Value$) untuk asuransi jiwa dwiguna berjangka dinotasikan dengan $A^1_{x:n}$].

$$Z = Z_1 + Z_2 \tag{2.26}$$

$$A_{x:n]}^{1} = A_{x:n]}^{1} + A_{x:n]}^{2}$$

$$A_{x:n]} = A_{x:n]}^{1} + A_{x:n]}$$
(2.27)

2. Premi tahun dan bulanan asuransi jiwa dwiguna berjangka (*endowment*)

Premi tahunan adalah premi yang di bayarkan pada awal tahun yang besarnya biasa sama maupun berubah-ubah setiap tahunnya sedangkan premi bulanan merupakan premi yang di bayarkan setiap bulannya atau premi yang dibayarkan c kali dalam setahun. premi tahun dan bulannan asuransi jiwa dwiguna berjagka untuk tertanggung berusia x tahun dengan uang tertanggung sebesar R santunan adalah :

Premi tahunan

$$_{t}P_{x:n]} = R \frac{A_{x:n]}}{\ddot{a}_{x:n]}}$$
 (2.28)

premi bulanan

$$_{t}P^{(c)}A_{x:n]} = \frac{A_{x:n]}}{\ddot{a}_{x:n}^{(c)}}$$
 (2.29)

G. Cadangan Premi

Cadangan merupakan taksiran sejumlah uang yang tersedia ditambah dengan jumlah yang akan di peroleh dari pembayaran premi netto dan bunga, harus bisa membayar semua claim dengan penuh. Jadi besarnya cadangan ditambah dengan nilai premi netto yang akan diterima harus sama dengan claim yang akan datang (*futureclaim*). Dari penerimaan-penerimaan premi tidak seluruhnya digunakan, sebagian dipisahkan untuk menghadapi risiko-risiko di kemudian hari dan ini disebut cadangan premi atau *Premium reserve*. Besarnya cadangan premi tergantung kepada perkembangan premi, artinya makin banyak jumlah pemegang polis semakin besar jumlah cadangan yang dibutuhkan.¹⁴

Cadangan premi diskrit pada waktu k merupakan ekspektasi kerugian diskrit pada waktu tersebut bagi perusahaan asuransi dimana pada waktu itu pemegang polis masih bertahan hidup yang dinyatakan dengan k^V . Dimana k^V merupakan cadangan premi diskrit dengan pertanggungan sebesar 1 yang dibayar pada saat kematian dan premi manfaat diskrit secara umum dari kontrak asuransi

23

¹⁴ Abbas Salim, *Asuransi & Manajemen Risiko*,(Jakarta : Raja Grafindo persada,2007), h.49-50.

berjangka n tahun dengan $P(A_{x:n|}^1)$, perusahaan asuransi perlu menyiapkan cadangan premi diskrit pada waktu tertentu yang dinyatakan sebagai $k^V P(A_{x:n|}^1)$

$$k^{V} P(A_{x:n|}^{1}) = A_{x+k|}^{1} - P(A_{x:n|}^{1})$$
(2.30)

Metode yang digunakan untuk menghitung cadangan premi adalah sebagai berikut 15

1. Cadangan retrospektif

Cadangan retrospektif adalah perhitungan cadangan dengan berdasarkan jumlah total pendapatan di waktu yang lalu sampai saat dilakukan perhitungan cadangan dikurangi dengan jumlah pengeluaran di waktu yang lampau.Secara aljabar hubungan ini di tulis :

$$_{t}V = _{t}U_{x} - _{t}K_{x}, \tag{2.31}$$

Dimana:

x : usiapolis dikeluarkan

t : tahun yang telah lewat sejak polis dikeluarkan

p : premi tahunan bersih santunan Rp 1 bagi x

tV: cadangan akhir tahun ke t

tUx : dana Tonti

 $_{t}K_{x}$: biaya akumulasi asuransi= $\frac{M_{x}-M_{x+t}}{D_{x+t}}$

2. Cadangan prospektif

¹⁵ Asri Nurul Fajriani,dkk, *Perbandingan Nilai Tebus dan Cadangan Premi Pada Asuransi Jiwa Kontinu*,(Semarang : Jl.prof soedarto,S.H), h.2-3.

Cadangan prospektif adalah perhitungan cadangan dengan berdasarkan nilai sekarang dari semua pengeluaran di waktu yang akan datang dikurangi dengan nilai sekarang total pendapatan di waktu yang akan datang untuk tiap pemegang polis. Formula cadangan untuk asuransi dwiguna berjangka

$$_{t}V_{x:n]} = A_{x+t:\overline{n-1}|} - P_{x:n|}\ddot{a}_{x+t:\overline{n-1}|}$$
 (2.32)

Dimana:

x : Usia waktu polis dikeluarkan

t : Tahun yang telah lewat sejak polis dikeluarkan

 $P_{x:n}$: Premi bersih tahunan untuk santuna 1 unit bagi x

 $_{t}V_{x:n}$: Cadangan akhir tahun ke t untuk asuransi jiwa

dwiguna berjangka

 $A_{x+t:\overline{n-1}}$:Santunan yang akan datang pada usia x+t untuk

asuransi jiwa dwiguna berjangka

 $\ddot{a}_{x+t:\overline{n-1}}$: Nilai tunai pada usia x-t sisa premi mendatang

untuk asuransi jiwa berjangka

H. Nilai Tebus

Nilai tebus adalah sejumlah uang yang diberikan perusahaan asuransi kepada pemegang polis karena pembatalan polis. Perhitungan nilai tebus dapat dikerjakan mengikuti cara perhitungan cadangan premi.

$$_{t}NT_{x} = A_{x+t:\overline{m-t}|} - P_{x:\overline{m}|}^{D}.\ddot{\alpha}_{x+t:\overline{n-t}|}$$
 (2.33)

BAB III

METODOLOGI PENELITIAN

A. Jenis Penelitian

Jenis penelitian yang digunakan adalah penelitian terapan.

B. Lokasi dan Waktu Penelitian

Lokasi penelitian dilakukan di Perpustakaan Uin Alauddin Makassar.

Penelitian dilakukan pada bulan Februari 2019 sampai bulan April 2019

C. Jenis Data dan Sumber Data

Jenis data yang digunakan adalah data kuantitatif. Sumber data yang digunakan pada penelitian ini berupa data sekunder yaitu diperoleh dari studi kepustakaan, jurnal-jurnal penelitian yang berhubungan dan mendukung penelitian, serta data peserta asuransi jiwa dwiguna.

D. Variabel dan Definisi Operasional Variabel

Variabel yang digunakan dalam penelitian ini adalah cadangan premi (V) dan nilai tebus (${}_{t}NT_{x}$). Adapun definisi operasional variabel yaitu :

1. Cadangan Premi

Cadangan premi (V) merupakan sejumlah uang dalam suatu kelompok yang diperoleh dari setiap peserta asuransi saat membayar premi.

2. Nilai tebus

Nilai tebus (${}_{t}NT_{x}$) merupakan sejumlah uang yang di berikan perusahaan asuransi kepada pemegang polis karena pembatalan polis.

E. Prosedur Penelitian

Adapun prosedur penelitian ini untuk mendapatkan besaran nilai tebus dan cadangan pada asuransi jiwa dwiguna berjangka adalah :

- 1. Menentukan jenis tabel mortalita
- 2. Menentukan usia awal tertanggung
- 3. Menentukan tingkat bunga
- 4. Menentukan lama pertanggungan
- 5. Menentukan besarnya santunan
- 6. Menghitung nilai dari simbol komutasi
- 7. Menghitung nilai dari asuransi jiwa dwiguna berjangka
- Menghitung nilai dari anuitas hidup awal dan anuitas hidup awal yang di bayarkan bulanan dwiguna berjangka
- Menghitung besarnya nilai premi pertahun dan premi bulanan dari asuransi dwiguna berjangka
- Menghitung besarnya nilai cadangan prospektif dari asuransi dwiguna berjangka
- 11. Menghitung besarnya nilai tebus dari asuransi dwiguna berjangka

BAB 1V

HASIL DAN PEMBAHASAN

A. Hasil Penelitian

1. Menentukan jenis tabel mortalita

Tabel mortalita yang digunakan sebagai acuan untuk menghitung premi adalah tabel mortalita Indonesia 2011 (TMI) perempuan, dimana TMI 2011 ini sebagai acuan baru untuk industri asuransi jiwa di Indonesia. Tabel mortalita dapat di lihat di lampiran pertama

2. Menentukan usia awal tertanggung (x)

Usia awal tertanggung adalah usia 30 tahun (Perempuan)

3. Menentukan tingkat bunga (i)

Tingkat suku bunga yang di gunakan adalah tingkat bunga Bank Sentral Indonesia (BI) Sebesar 5.75%. yang diperoleh dari laman website https://www.bi.go.id

4. Menentukan lama pertanggungan (n)

Lama usia pertanggungan asuransi adalah 15 tahun

5. Menentukan besarnya santuan

Besarnya santunan yang akan diberikan adalah 20.000.000,00

6. Menghitung nilai komutasi

Nilai komutasi merupakan nilai dari simbol-simbol pada tabel komutasi yang memiliki hubungan erat dengan tabel mortalita, dimana simbol-simbol ini digunakan untuk menghitung nilai premi tahunan, nilai cadangan premi, dan perhitungan nilai asuransi lainnya. Adapun simbol-simbol komutasi di antaranya D_x , C_x , N_x , M_x

a. Menghitung nilai pembayaran asuransi untuk usia perempuan (x)=30 tahun dengan banyaknya peserta asuransi yang hidup pada usia 30 tahun mencapai umur 50 tahun (D_x) , untuk mendapatkan nilai (D_x) digunakan rumus sebagai berikut

$$D_x = v^x l_x$$

Misal untuk menghitung D_x , dengan x= 30

$$D_{30} = v^{30}l_{30}$$

$$= \left(\frac{1}{1+0.0575}\right)^{30} \times 98681.90841$$

$$= (0.945626478)^{30} \times 98681.90841$$

$$= 0.18689114506 \times 98681.90841$$

$$= 18442.77459$$

Nilai D_x secara keseluruhan dapat dilihat pada lampiran 3

b. Menghitung nilai pembayaran asuransi untuk usia perempuan (x)=30 tahun dengan banyaknya peserta asuransi yang hidup pada usia 30 tahun mencapai umur 50 tahun (C_x) , untuk mendapatkan nilai (C_x) digunakan rumus sebagai berikut:

 $C_x=v^{x+1}d_x$, jika d_x merupakan fungsi orang meninggal orang berusia x tahun, dimana $d_x=l_x-l_{x+1}$.

Misal untuk menghitung C_x , dengan x=30

$$C_{30} = 0.1767292126154(l_x - l_{x+1})$$

$$= 0.1767292126154(98681.90841 - 98628.62018)$$

$$= 0.1767292126154 \times 53.288230000006$$

$$= 9.4175869295694$$

Nilai C_x secara keseluruhan dapat dilihat pada lampiran 3

c. Menghitung nilai akumulasi D_{x+t} dengan t=0 tahun sampai $w=(N_x)$. Untuk menghitung N_x

$$N_x = \sum_{i=0}^{w} D_{x+t} = D_x + D_{x+t} + \dots + D_w$$

Contoh untuk menghitung N_x dimana x=30 dan w=105

$$N_{30} = D_{30} + D_{31} + \dots + D_{105}$$

= 18442,77459 + 17430,55839 + \dots + 648,0990792
= 311864,8165

Nilai N_x secara keseluruhan dapat dilihat pada lampiran 3

d. Menghitung nilai akumulasi C_{x+t} dengan t=0 tahun sampai $w=(M_x)$. Untuk menghitung M_x

$$M_x = \sum_{i=0}^{w} C_{x+t} = C_x + C_{x+t} + \dots + C_{105}$$

Contoh untuk menghitung M_x dimana x=30 dan w=105

$$M_{30} = C_{30} + C_{31} + \dots + C_{105}$$

= 9,41758693 + 9,395195677 + \dots + 4532,130969
= 1485,585985

Nilai M_x secara keseluruhan dapat dilihat pada lampiran 3

e. Menghitung nilai dari asuransi jiwa dwiguna berjangka

Asuransi jiwa dwiguna berjangka merupakan gabungan antara asuransi berjangka dan asuransi dwiguna murni berjanka maka, pertama meghitung nilai asuransi berjangka yang dinotasikan dengan $A^1_{x:n}$ dan hitung asuransi dwiguna murni berjangka yang di notasikan dengan $A^1_{x:n}$

a. Asuransi Berjangka

$$E[Z] = A_{x:n}^1 = \frac{M_x - M_{x+n}}{D_x}$$

Penyelesaian;

$$E[Z] = A_{30:15]}^{1} = \frac{M_{30} - M_{45}}{D_{30}}$$

$$= \frac{1485,585985 - 1327,841398}{18442,77459}$$

$$= \frac{157,744587}{18442,77459}$$

$$= 0,008553192$$

b. Asuransi Dwiguna Murni Berjangka

Hitung asuransi dwiguna murni berjangka yang di notasikan dengan $A_{x:n}^{-1}$

$$E[Z] = A_{x:n}^{1} = \frac{D_{x+n}}{D_x}$$

Penyelesaian;

$$E[Z] = A_{30:15}^{1}$$

$$= \frac{D_{45}}{D_{30}}$$

$$= \frac{7859,478537}{18442,77459}$$

$$= 0,426154888$$

Setelah itu hitung santunan dibayarkan akhir tahun kematian dwiguna berjangka;

$$A_{x:n]} = A_{x:n]}^1 + A_{x:n]}^1$$

Penyelesaian;

$$A_{x:n} = A_{30:15}^{1} + A_{30:15}^{1}$$

$$= 0.008553192 + 0.426154888$$

$$= 0.43470808$$

 f. Menghitung nilai anuitas hidup awal dwiguna berjangka dan anuitas di bayar bulanan usia 30 tahun dengan masa pertanggungan 15 tahun

$$\ddot{a}_{x:n} = \frac{N_x - N_{x+n}}{D_x}$$

Penyelesaian:

$$\ddot{a}_{30:151} = \frac{N_{30} - N_{45}}{D_{30}}$$

$$= \frac{311864,8165 - 120125,3265}{18442,77459}$$

$$= \frac{1.917.394.900}{18442,77459}$$

$$= 10,396455742834$$

Kemudian menghitung anuitas bulanan di bayar 12 kali dalam setahun

$$\begin{split} \ddot{a}_{30:15}^{(c)} &= \ddot{a}_{30:15} - \frac{c-1}{2(c)} \cdot (1 - {}_{\text{n}} E_k) \\ &= 10,396455742834 - 0,458(0,57384511215254) \\ &= 5,7029431599459 \end{split}$$

g. Menghitung premi tahunan dan bulanan dari asuransi dwiguna berjangka adalah sebagai berikut:

$$_{\mathsf{t}}P(A_{x:n}) = \operatorname{santunan} \frac{A_{x:n}}{\ddot{a}_{x:n}}$$

Penyelesaian;

$${}_{15}P(A_{30:15]}) = santunan \frac{A_{30:15]}}{\ddot{a}_{30:15]}}$$

$$= 20.000.000 \frac{0.43470808}{10.39645575}$$

$$= 836.262,06$$

$${}_{15}P^{(12)}(A_{30:15]}) = \frac{A_{30:15]}}{\ddot{a}_{30:15]}^{(c)}}$$

$$=\frac{0,43470808}{5,7029431599459}$$

 Menghitung nilai cadangan prospektif pada asuransi jiwa dwiguna berjangka.

Pertama mencari nilai $A_{30+4:\overline{15-4}}$

$$A_{34:\overline{11}|} = A_{x:n|}^1 + A_{x:n|}^1$$

= 0.0081873217767 + 0.5341966744343

= 0,542383996211

Cadangan premi asuransi jiwa dwiguna berjangka dengan metode prospektif dinotasikan dengan ${}^{n}_{t}V_{x:n}$ yaitu sebagai berikut :

Cadangan akhir tahun premi tahunan menggunakan metode prospektif

$$_{t}^{n}V = santunan A_{x+t:\overline{n-t}|} - {}_{15}P(A_{30:15|}) . \ddot{a}_{x+t:\overline{n-t}|}$$

 ${}^{15}V_{4}(A_{30:15}) = (20.000.000(0,542383996211) - 836.262,06))8,4161551901075$

= 84.261.618,06

Kemudian 2 dan 3 untuk menghitung cadangan akhir tahun pembayaran premi bulanan metode prospektif

$$_{4}V^{(12)} = {}_{4}^{15}V (A_{30:15|})[1 + {}_{12}^{11}{}_{15}P^{(12)}(A_{30:15|})]$$

= 120.375.014,33[1,458(0,0762252170166)]

= 5.363.620,86

Jadi, nilai cadangan akhir tahun pada asuransi jiwa dwiguna berjangka di akhir tahun ke-4 pembayaran premi bulanan adalah Rp.5.363.620,86

i. Menghitung besarnya nilai tebus dari asuransi dwiguna berjangka

Selanjutnya menghitung besar nilai tebus pada asuransi jiwa dwiguna berjangka, untuk mencari nilai tebus dapat di kerjakan mengikuti cara perhitungan cadangan premi

Berdasarkan metode biaya suatu polis terdiri atas dua bagian yaitu:

- a. Suatu biaya B besarnya yang besarnya sama tiap tahun selama jangka waktu pembayaran premi
- b. Biaya tambahan tahun pertama, misalnya B`. Jadi jumlah biaya menjadi B+B`. B` ditentukan berdasarkan :
- 1) Rp 2.000.000 : Rp 20.000.000 asuransi santunan
- 2) 30% dari premi disesuaikan (P^D) , tapi besarnya tidak melebihi Rp.11.000.000
- 3) 20% dari premi disesuaikan untuk polis tersebut atau dari premi disesuaikan untuk polis asuransi dwiguna berjangka

Seorang perempuan berusia 30 tahun membeli asuransi jiwa dwiguna berjangka 15 tahun dengan pembayaran premi tahunan dengan santunan sebesar Rp.20.000.000 dimana, Misalkan t=4

dimana pemegang polis mengundurkan diri, tebusnya di notasikan dengan ${}_{\rm t}{\rm N}T_{\rm x}$

$$_{t}NT_{x} = A_{x+t:\overline{n-t}} - P_{x:m}^{D} \cdot \ddot{a}_{x+t:\overline{m-t}}^{(c)}$$

Besar santunan dan premi anuitas pembayaran bulanan dalam setahun pada usia x+t tahun di mana t merupakan waktu pemegang polis mengundurkan diri yang dinotasikan $A_{x+t:\overline{n-t}|}-\ddot{a}_{x+t:\overline{m-t}|}^{(c)}$ sebagai berikut :

Pertama-tama mencari nilain $A_{x+t:\overline{n-t}}$

$$A_{30+4:\overline{15-4}}$$

$$A_{34:\overline{11}} = A_{x:n}^{1} + A_{x:n}^{1}$$

$$= 0,0081873217767 + 0,5341966744343$$

$$= 0,542383996211$$

Kemudian mencari nilai $\ddot{a}_{x+t:\overline{m-t}|}^{(c)}$ di mana c merupakan anuitas di bayar 12 kali dalam setahun

$$\ddot{a}_{30+4:\overline{15-4}|}^{(c)}$$

$$\ddot{a}_{34:\overline{11}|}^{(c)} = \ddot{a}_{34:\overline{11}|} - \frac{c-1}{2(c)} \cdot (1 - {}_{n}E_{k})$$

$$= 8,4161551901075 - [0,458 \times 0,4658033255657]$$

$$= 3,7067800404126$$

Besar nilai P_x^D yang pembayaran preminya menggunakan anuitas dibayar c kali dalam setahun sebagai berikut :

$$\begin{split} P^D_{30}.\ddot{a}^{(12)}_{30} &= santunan \;.\; \bar{A}_{30} + 0,1 \;.\; santunan + 0,3 \\ P^D_{30} &= \frac{santunan \;.\; \bar{A}_{30} + 0,1 \;.\; santunan + 0,3 \\ P^D_{30} &= \frac{santunan \;.\; \bar{A}_{30} + 0,1 \;.\; santunan + 0,3 \\ P^D_{30} &= \frac{20.000.000(0,0805511111005) + 0,1(20.000.000)}{16,451531347044 + 0,3} \\ &= \frac{3.611.022,22}{16,451531347044} \\ &= 223.571,51 \end{split}$$

Karena $P_{30}^D < 0.2(santunan) = 4.000.000$ maka langsung di cari

$$P_{\overline{x:m}}^{D}$$

$$P_{\overline{x:m|}}^{D}.\ddot{a}_{34:\overline{11}|}^{(c)} = santunan.A_{\overline{15:30|}} + 0.1. santunan + 0.2P_{\overline{x:m|}}^{D} + 0.2P_{30}^{D}$$

$$P_{\overline{30:15|}}^{D} = \frac{santunan.\bar{A}_{30} + 0.1. santunan + 0.2P_{30}^{D}}{\ddot{a}_{34:\overline{11}|}^{(c)} + 0.2}$$

$$= \frac{20.000.000(0.43470808) + 2.000.000 + 0.2(223.571.51)}{5.7029431599459 - 0.2}$$

$$= \frac{10.738.875.9}{5.5029431599459}$$

= 1.951.478.61

Terlihat $P_{\overline{30:15}}^{D} < 0.2(santunan) = 4.000.000$ maka selanjutnya menghitung nilai tebus minimum pada akhir tahun ke-4:

$$_{t}$$
 N $T_{x} = santunan \ A_{\overline{x+t:m-t}|} - P_{x:m|}^{D} \cdot \ddot{a}_{\overline{x+t:n-t}|}$
 $_{4}$ N $T_{30} =$
 $20.000.000 \times 0,542383996211 - 1.951.478,61 \times 3,7067800404126$
 $= 3.613.977,96$

Jadi nilai tebus untuk asuransi jiwa *endowmend* berjangka perempuan yang berusia 30 tahun santunan sebesar *Rp.20.000.000*

mengikuti asuransi 15 tahun dengan pembayaran premi bulanan adalah *Rp*. 3.613.977,96

B. Pembahasan

Berdasarkan hasil penelitian dan contoh perhitungan, dapat dijelaskan bahwa dalam perhitungan cadangan dan nilai tebus asuransi jiwa dwiguna berjangka *n* tahun dengan perhitungan cadangan menggunakan metode prospektif, maka terlebih dahulu diketahui usia pemegang polis (tertanggung) dan jangka waktu pembayaran. Usia untuk tertanggung 30 tahun dalam jangka waktu pembayaran selama 15 tahun.

Besar santunan yang diasumsikan sebesar Rp.20.000.000,00 dan acuan suku bunga yang digunakan untuk menghitung nilai komutasi pada asuransi jiwa D_x , C_x , N_x , M_x merupakan Bank Sentral Indonesia (BI) terbaru 18 juli 2019 yaitu 5,75%. Nilai komutasi merupakan nilai yang di pakai pada perhitungan asuransi jiwa

Menghitung asuransi dwiguna berjangka maka kita harus mencari nilai asuransi dwiguna berjangka $A_{x:n}$, anuitas \ddot{a}_x dan premi P_x . Asuransi merupakan gabungan antara asuransi berjangka $A^1_{x:n}$ dan asuransi dwiguna murni berjangka $A^1_{x:n}$ dengan menggunakan simbol-simbol komutasi D_x , C_x , N_x , M_x .

Maka, nilai untuk asuransi berjangka $A_{x:n}^1$ peroleh sebesar 0,008553192 dan nilai asuransi jiwa dwiguna murni diperoleh sebesar 0,426154888 sehingga untuk asuransi jiwa dwiguna berjangka diperoleh 0,43470808.

Untuk anuitas hidup awal seseorang dengan n=15 tahun dengan $\ddot{a}_{x:n}$ diperoleh 10,39645575 , dan anuitas yang dibayar bulanan $\ddot{a}_{30:15}^{(c)}$ selama setahun adalah sebesar 5,7029431599459

Premi bersih tahunan asuransi jiwa yang dibayar oleh pemegang polis yang berusia 30 tahun dengan santunan Rp.20.000.000,00 di peroleh sebesar 836.262,06 dan premi pembayaran bulanan sebesar 0,0762252170166. Sehingga Besar cadangan premi dengan menggunakan metode perhitungan prospektif yang dibayar oleh pemegang polis yang berusia 30 tahun pada akhir tahun ke-4 pembayaran premi bulanan selama 15 tahun dengan santunan sebesar Rp.20.000.000 adalah Rp. 5.363.620,86.

Pada perhitungan besaran nilai tebus, P_x^D anuitas di bayarkan 12 kali dalam setahun sebesar 223.571,51, kemudian besar $P_{x:m]}^D$ premi yang disesuaikan untuk asuransi jiwa *endowment* berjangka sehingga di peroleh nilai tebus yang dibayarkan oleh perusahaan asuransi yang berusia 30 tahun pada akhir tahun ke-4 dengan santunan Rp.20.000.000 adalah sebesar Rp.3.613.977,96

BAB V

PENUTUP

A. Kesimpulan

Berdasarkan hasil penelitian, dapat di simpulkan bahwa besarnya cadangan premi di akhir tahun ke-4 dengan kasus usia pemegang polis awal 30 tahun untuk asuransi jiwa dwiguna berjangka 15 tahun dengan santunan sebesar *Rp.20.000.000* di peroleh nilai cadangan *Rp.* 5.363.620,86 dan nilai tebus jika pemegang polis mengundurkan diri di tahun ke-4 sebesar *Rp.* 3.613.977,96

B. Saran

Adapun saran pada pembahasan selanjutnya dapat digunakan penentuan nilai cadangan dan nilai tebus pada asuransi jiwa lain seperti suransi jiwa seumur hidup .

DAFTAR PUSTAKA

- Darmawi, Abbas. Manajemen Asuransi. Jakarta: Bumi Aksara, 2004
- Salim, Abbas. *Asuransi dan Manajemen Risiko*. Jakarta : Rja Grafindo Persada, 2007
- Achdijat, Didi. Teknik Pengolaan Asuransi Jiwa .Jakarta : Gunadarma, 1993
- Futami, Takashi. *Matematika Asuransi Bagian I*. Tokyo: Oriental Life Insurance

 Cultural Development Center, 1994
- Kementrian Agama RI *Al-Quran dan Terjemahannya*. Bandung : Cv. Penerbit Diponegoro.
- Shihab, M.Quraish. *Tafsir Al-Mishbah pesan kesan dan keserasian Al-Quran*.

 Bandung: Lentera Hati, 2002. Vol 6.
- Wirdyningsih. Bank dan Asuransi Islam di Indonesia. Jakarta: Kencana, 2005
- Ali, Hasan. Asuransi Dalam Prospektif Islam Jakarta: Kencana, 2004.
- Zuhairo, Faihatuz. Diktat Kuliah Matematika Asuransi, 2012
- Nurul, Fajriani Asri dkk. *Perbandingan Nilai Tebus dan Cadangan Premi Pada Asuransi Jiwa Kontinu*. Jurnal Matematika. Vol 4, 2012.
- Lestari, Sherly. Membandingkan Asuransi Jiwa Berjangka Berdasarkan Hukum Mortalita Mahekam dan Tabel Mortalita Amerika 1979-1981 Dengan

Tingkat Suku Bunga Konstant. Jurnal Matematika Statisk. Vol 11. No 2, 2011.

k	х	qx	рх	lx
0	30	0,00054	0,99946	98681,90841
1	31	0,00057	0,99943	98628,62018
2	32	0,0006	0,9994	98572,40186
3	33	0,00062	0,99938	98513,25842
4	34	0,00064	0,99936	98452,18020
5	35	0,00067	0,99933	98389,17081
6	36	0,00074	0,99926	98323,25006
7	37	0,00084	0,99916	98250,49086
8	38	0,00093	0,99907	98167,96044
9	39	0,00104	0,99896	98076,66424
10	40	0,00114	0,99886	97974,66451
11	41	0,00126	0,99874	97862,97339
12	42	0,00141	0,99859	97739,66605
13	43	0,00158	0,99842	97601,85312
14	44	0,00175	0,99825	97447,64219
15	45	0,00193	0,99807	97277,10882
16	46	0,00214	0,99786	97089,36400
17	47	0,00239	0,99761	96881,59276
18	48	0,00268	0,99732	96650,04575
19	49	0,00299	0,99701	96391,02363
20	50	0,00334	0,99666	96102,81447
21	51	0,00374	0,99626	95781,83107
22	52	0,00422	0,99578	95423,60702
23	53	0,00479	0,99521	95020,91940

ndx	V	Dx	Сх	Nx	Mx
53,28823	0,945626478	18442,77459	9,41758693	311864,8165	1485,585985
56,21832	0,945626478	17430,55839	9,395195677	293422,0419	1476,168398
59,14344	0,945626478	16473,40233	9,346611076	275991,4836	1466,773203
61,07822	0,945626478	15568,33881	9,127536669	259518,0812	1457,426592
63,00939	0,945626478	14712,70585	8,904142742	243949,7424	1448,299055
65,92075	0,945626478	13903,82007	8,809040407	229237,0366	1439,394912
72,75920	0,945626478	13139,01135	9,194201162	215333,2165	1430,585872
82,53042	0,945626478	12415,40282	9,861881175	202194,2051	1421,391671
91,29620	0,945626478	11730,47176	10,3161592	189778,8023	1411,529789
101,99973	0,945626478	11082,32853	10,89893294	178048,3306	1401,21363
111,69112	0,945626478	10468,84436	11,28556296	166966,002	1390,314697
123,30734	0,945626478	9888,330851	11,7818404	156497,1577	1379,029134
137,81293	0,945626478	9338,885631	12,45184759	146608,8268	1367,247294
154,21093	0,945626478	8818,645676	13,17584904	137269,9412	1354,795446
170,53337	0,945626478	8325,968998	13,77819898	128451,2955	1341,619597
187,74482	0,945626478	7859,478537	14,34401284	120125,3265	1327,841398
207,77124	0,945626478	7417,786992	15,01093545	112265,848	1313,497386
231,54701	0,945626478	6999,444849	15,81907653	104848,061	1298,48645
259,02212	0,945626478	6603,0413	16,73394847	97848,61613	1282,667374
288,20916	0,945626478	6227,276737	17,60714648	91245,57483	1265,933425
320,98340	0,945626478	5871,070619	18,54314501	85018,29809	1248,326279
358,22405	0,945626478	5533,296684	19,56929523	79147,22747	1229,783134
402,68762	0,945626478	5212,862557	20,80215594	73613,93079	1210,213838
455,15021	0,945626478	4908,618702	22,2338382	68401,06823	1189,411682

24	54	0,00542	0,99458	94565,76919
25	55	0,00607	0,99393	94053,22272
26	56	0,00669	0,99331	93482,31966
27	57	0,00725	0,99275	92856,92294
28	58	0,00776	0,99224	92183,71025
29	59	0,00826	0,99174	91468,36466
30	60	0,00877	0,99123	90712,83597
31	61	0,00936	0,99064	89917,28440
32	62	0,01004	0,98996	89075,65861
33	63	0,01104	0,98896	88181,33900
34	64	0,01214	0,98786	87207,81702
35	65	0,01334	0,98666	86149,11412
36	66	0,01466	0,98534	84999,88494
37	67	0,01612	0,98388	83753,78663
38	68	0,01771	0,98229	82403,67559
39	69	0,01947	0,98053	80944,30649
40	70	0,02121	0,97879	79368,32084
41	71	0,02319	0,97681	77684,91876
42	72	0,02539	0,97461	75883,40549
43	73	0,02778	0,97222	73956,72583
44	74	0,03042	0,96958	71902,20798
45	75	0,0333	0,9667	69714,94282
46	76	0,03646	0,96354	67393,43522
47	77	0,03991	0,96009	64936,27057
48	78	0,04372	0,95628	62344,66401
49	79	0,04789	0,95211	59618,95530

24	54	0,00542	0,99458	94565,76919		512,54647	0,945626478	4619,485975	23,67623076	63492,44953	1167,177844
25	55	0,00607	0,99393	94053,22272		570,90306	0,945626478	4344,63202	24,93798229	58872,96356	1143,501613
26	56	0,00669	0,99331	93482,31966		625,39672	0,945626478	4083,461091	25,83295958	54528,33154	1118,563631
27	57	0,00725	0,99275	92856,92294		673,21269	0,945626478	3835,595968	26,29604795	50444,87045	1092,730672
28	58	0,00776	0,99224	92183,71025		715,34559	0,945626478	3600,745056	26,42248849	46609,27448	1066,434624
29	59	0,00826	0,99174	91468,36466		755,52869	0,945626478	3378,537376	26,38933205	43008,52942	1040,012135
30	60	0,00877	0,99123	90712,83597		795,55157	0,945626478	3168,445066	26,2763718	39629,99205	1013,622803
31	61	0,00936	0,99064	89917,28440		841,62579	0,945626478	2969,889175	26,2866789	36461,54698	987,3464313
32	62	0,01004	0,98996	89075,65861		894,31961	0,945626478	2782,11916	26,41368917	33491,65781	961,0597524
33	63	0,01104	0,98896	88181,33900		973,52198	0,945626478	2604,431852	27,18952962	30709,53864	934,6460633
34	64	0,01214	0,98786	87207,81702		1058,70290	0,945626478	2435,630189	27,96080429	28105,10679	907,4565336
35	65	0,01334	0,98666	86149,11412		1149,22918	0,945626478	2275,235592	28,70131701	25669,4766	879,4957293
36	66	0,01466	0,98534	84999,88494		1246,09831	0,945626478	2122,821701	29,42843126	23394,24101	850,7944123
37	67	0,01612	0,98388	83753,78663		1350,11104	0,945626478	1977,967977	30,1511525	21271,41931	821,3659811
38	68	0,01771	0,98229	82403,67559		1459,36910	0,945626478	1840,267738	30,81904658	19293,45133	791,2148286
39	69	0,01947	0,98053	80944,30649		1575,98565	0,945626478	1709,386852	31,47211543	17453,1836	760,395782
40	70	0,02121	0,97879	79368,32084		1683,40208	0,945626478	1584,969352	31,78931429	15743,79674	728,9236666
41	71	0,02319	0,97681	77684,91876		1801,51327	0,945626478	1466,999671	32,16995031	14158,82739	697,1343523
42	72	0,02539	0,97461	75883,40549		1926,67966	0,945626478	1355,063782	32,53434451	12691,82772	664,964402
43	73	0,02778	0,97222	73956,72583		2054,51785	0,945626478	1248,849846	32,80666556	11336,76394	632,4300574
44	74	0,03042	0,96958	71902,20798		2187,26516	0,945626478	1148,138815	33,0273122	10087,91409	599,6233919
45	75	0,0333	0,9667	69714,94282		2321,50760	0,945626478	1052,683151	33,14832057	8939,775277	566,5960797
46	76	0,03646	0,96354	67393,43522		2457,16465	0,945626478	962,2967399	33,17762569	7887,092125	533,4477591
47	77	0,03991	0,96009	64936,27057		2591,60656	0,945626478	876,7956508	33,09022643	6924,795385	500,2701334
48	78	0,04372	0,95628	62344,66401		2725,70871	0,945626478	796,0309564	32,91014034	6047,999734	467,179907
49	79	0,04789	0,95211	59618,95530		2855,15177	0,945626478	719,837809	32,59861246	5251,968778	434,2697667
B.	-				•						

50	80	0,05247	0,94753	56763,80353
51	81	0,05877	0,94123	53785,40676
52	82	0,06579	0,93421	50624,43841
53	83	0,07284	0,92716	47293,85660
54	84	0,08061	0,91939	43848,97209
55	85	0,08925	0,91075	40314,30645
56	86	0,09713	0,90287	36716,25460
57	87	0,10893	0,89107	33150,00479
58	88	0,12131	0,87869	29538,97477
59	89	0,1345	0,8655	25955,60174
60	90	0,14645	0,85355	22464,57330
61	91	0,15243	0,84757	19174,63654
62	92	0,16454	0,83546	16251,84670
63	93	0,18235	0,81765	13577,76784
64	94	0,20488	0,79512	11101,86187
65	95	0,23305	0,76695	8827,31241
66	96	0,25962	0,74038	6770,10726
67	97	0,2872	0,7128	5012,45201
68	98	0,29173	0,70827	3572,87579
69	99	0,30759	0,69241	2530,56074
70	100	0,33241	0,66759	1752,18556
71	101	0,35918	0,64082	1169,74156
72	102	0,38871	0,61129	749,59379
73	103	0,42124	0,57876	458,21919
74	104	0,45705	0,54295	265,19894
75	105	0,4958	0,5042	143,98976

51 81 0,05877 0,94123 53785,40676 52 82 0,06579 0,93421 50624,43841 3160,96835 0,945626478 510,029036 32,27225493 3884,03189 369,95836 53 83 0,07284 0,92716 47293,85660 3444,88451 0,945626478 456,5974885 31,4501759 2786,4732 305,6 54 84 0,08061 0,91939 43848,97209 3534,66564 0,945626478 456,5974885 31,4501759 2786,4732 305,6 55 85 0,08025 0,91075 40314,30645 3566,624981 0,945626478 348,0384524 29,37345803 1929,555213 243,1 56 86 0,09713 0,90287 36716,25460 3666,24981 0,945626478 245,9409177 27,53081356 1581,51676 213,7345 58 80 0,12131 0,87869 29538,97477 3583,37303 0,945626478 179,1750909 22,78869955 810,2271824 135 60 90 0,14645	ĺ				l	ı i	Ī	l	Ī	ı	Ī
52 82 0,06579 0,93421 50624,43841 3330,58181 0,945626478 516,8557863 32,15502813 3303,28886 337,755 53 83 0,07284 0,92716 47293,85660 3444,88451 0,945626478 456,5974885 31,4501759 2786,4732 305,655 54 84 0,08061 0,91939 43848,97209 3534,66564 0,945626478 400,3204988 30,51521078 2329,875711 273,65 55 85 0,08925 0,91075 40314,30645 3598,05185 0,945626478 299,7409177 27,53081356 1581,51676 213,734803 1929,555213 243,135 57 87 0,10893 0,89107 33150,00479 3583,37303 0,945626478 299,7409177 27,53081356 1581,51676 213,75843 186,2 59 89 0,1345 0,88555 25955,60174 3691,02844 0,945626478 179,1750909 22,78869955 810,2271824 135 61 91 0,15243 0,83546 16251,84670	50	80	0,05247	0,94753	56763,80353	2978,39677	0,945626478	648,0990792	32,15674579	4532,130969	401,6711542
53 83 0,07284 0,92716 47293,85660 54 84 0,08061 0,91939 43848,97209 55 85 0,08925 0,91075 40314,30645 56 86 0,09713 0,90287 36716,25460 57 87 0,10893 0,89107 33150,00479 58 88 0,12131 0,87869 29538,97477 59 89 0,1345 0,8655 25955,60174 60 90 0,14645 0,83555 22464,57330 3289,33730 0,945626478 15,365256 24,73651719 1025,863708 159,8 61 91 0,15243 0,84557 19174,63654 292,78984 0,945626478 179,175090 22,78869955 810,2271824 135 62 92 0,16454 0,83546 16251,84670 2674,0786 0,945626478 179,175090 22,78869955 810,2271824 135 63 93 0,18235 0,81765 13577,6784 2674,0786 0,9456264	51		·		·	3160,96835	0,945626478	580,7029036	32,27225493	3884,03189	369,5144084
54 84 0,08061 0,91939 43848,97209 3534,66564 0,945626478 400,3204988 30,51521078 2329,875711 273,6 55 85 0,08925 0,91075 40314,30645 3598,05185 0,945626478 348,0384524 29,37345803 1929,555213 243,1 56 86 0,09713 0,90287 36716,25460 3566,24981 0,945626478 299,7409177 27,53081356 1581,51676 213,7 57 87 0,10893 0,89107 33150,00479 3611,03002 0,945626478 299,7409177 27,53081356 1581,51676 213,7 59 89 0,1345 0,8655 25955,60174 3491,02844 0,945626478 215,6365256 24,73651719 1025,863708 159,8 61 91 0,15243 0,84757 19174,63654 2922,78984 0,945626478 146,6440106 20,30828875 631,0520915 112,2 62 92 0,16454 0,83546 16251,84670 2674,07886 0,945626478 94,86546083	52	82	0,06579	0,93421	50624,43841	3330,58181	0,945626478	516,8557863	32,15502813	3303,328986	337,2421535
55 85 0,08925 0,91075 40314,30645 56 86 0,09713 0,90287 36716,25460 57 87 0,10893 0,89107 33150,00479 58 88 0,12131 0,87869 29538,97477 3583,37303 0,945626478 255,9121346 26,36076483 1281,775843 186,2 59 89 0,1345 0,8655 25955,60174 3491,02844 0,945626478 215,6365256 24,73651719 1025,863708 159,8 60 90 0,14645 0,85355 22464,57330 3289,93676 0,945626478 179,1750909 22,7886955 810,2271824 135 61 91 0,15243 0,84757 19174,63654 2922,78984 0,945626478 146,6440106 20,30828875 631,0520915 112,3 63 93 0,18235 0,81765 13577,76784 2674,07886 0,945626478 148,3621704 17,06094145 484,4080809 92,03 65 95 0,23305 0,76695 <th< td=""><td>53</td><td>83</td><td>0,07284</td><td>0,92716</td><td>47293,85660</td><td>3444,88451</td><td>0,945626478</td><td>456,5974885</td><td>31,4501759</td><td>2786,4732</td><td>305,0871253</td></th<>	53	83	0,07284	0,92716	47293,85660	3444,88451	0,945626478	456,5974885	31,4501759	2786,4732	305,0871253
56 86 0,09713 0,90287 36716,25460 3566,24981 0,945626478 299,7409177 27,53081356 1581,51676 213,75843 188,51676 213,75843 188,51676 213,75843 186,24981 0,945626478 299,7409177 27,53081356 1581,51676 213,75843 186,24981 0,945626478 299,7409177 27,53081356 1581,51676 213,75843 186,24981 0,945626478 259,9121346 26,36076483 1281,775843 186,24981 0,945626478 259,9121346 26,36076483 1281,75843 186,24981 0,945626478 259,9121346 26,36076483 1281,75843 186,24981 0,945626478 259,9121346 26,36076483 1281,75843 186,24981 0,945626478 259,9121346 26,36076483 1281,75843 186,24981 0,945626478 215,6365256 24,73651719 1025,863708 158,24371 118,244 0,945626478 179,175090 22,7886955 810,2271824 135 232,78984 0,945626478 148,6440106 20,30828875 631,0520915 112,344 20,244,408809 22,027,8984 0,945626478	54	84	0,08061	0,91939	43848,97209	3534,66564	0,945626478	400,3204988	30,51521078	2329,875711	273,6369494
57 87 0,10893 0,89107 33150,00479 3611,03002 0,945626478 255,9121346 26,36076483 1281,775843 186,2 58 88 0,12131 0,87869 29538,97477 3583,37303 0,945626478 215,6365256 24,73651719 1025,863708 159,8 59 89 0,1345 0,8655 25955,60174 3491,02844 0,945626478 179,1750909 22,78869955 810,2271824 135 60 90 0,14645 0,85355 22464,57330 3289,93676 0,945626478 146,6440106 20,30828875 631,0520915 112,3 61 91 0,15243 0,84757 19174,63654 2922,78984 0,945626478 118,3621704 17,06094145 484,4080809 92,0 62 92 0,16454 0,83546 16251,84670 2674,07886 0,945626478 14,96546083 14,76043778 366,0459105 74,5 64 94 0,20488 0,79512 11101,86187 2274,54946 0,945626478 74,94685379	55	85	0,08925	0,91075	40314,30645	3598,05185	0,945626478	348,0384524	29,37345803	1929,555213	243,1217387
58 88 0,12131 0,87869 29538,97477 3583,37303 0,945626478 215,6365256 24,73651719 1025,863708 159,8 59 89 0,1345 0,8655 25955,60174 3583,37303 0,945626478 215,6365256 24,73651719 1025,863708 159,8 60 90 0,14645 0,85355 22464,57330 3289,93676 0,945626478 146,6440106 20,30828875 631,0520915 112,3 61 91 0,15243 0,84757 19174,63654 2922,78984 0,945626478 146,6440106 20,30828875 631,0520915 112,3 62 92 0,16454 0,83546 16251,84670 2674,07886 0,945626478 94,86546083 14,76043778 366,0459105 74,5 63 93 0,18235 0,81765 13577,76784 2274,594946 0,945626478 74,94685379 12,92345987 271,1804496 60,20 65 95 0,23305 0,76695 8827,31241 2057,20515 0,945626478 31,59944456	56	86	0,09713	0,90287	36716,25460	3566,24981	0,945626478	299,7409177	27,53081356	1581,51676	213,7482806
59 89 0,1345 0,8655 25955,60174 60 90 0,14645 0,85355 22464,57330 61 91 0,15243 0,84757 19174,63654 62 92 0,16454 0,83546 16251,84670 26274,07886 0,945626478 118,3621704 17,06094145 484,4080809 92,02 63 93 0,18235 0,81765 13577,76784 2674,07886 0,945626478 94,86546083 14,76043778 366,0459105 74,5 64 94 0,20488 0,79512 11101,86187 2274,54946 0,945626478 74,94685379 12,22345987 271,1804496 60,20 65 95 0,23305 0,76695 8827,31241 2057,20515 0,945626478 31,59944456 7,75777577 94,71480342 26,44 67 97 0,2872 0,7128 5012,45201 1439,57622 0,945626478 14,91217754 4,01378679 40,99186312 12,66 68 98 0,29173 0,70827 35	57	87	0,10893	0,89107	33150,00479	3611,03002	0,945626478	255,9121346	26,36076483	1281,775843	186,2174671
60 90 0,14645 0,85355 22464,57330 3289,93676 0,945626478 146,6440106 20,30828875 631,0520915 112,3 61 91 0,15243 0,84757 19174,63654 2922,78984 0,945626478 148,6440106 20,30828875 631,0520915 112,3 62 92 0,16454 0,83546 16251,84670 2674,07886 0,945626478 94,86546083 14,76043778 366,0459105 74,94685379 12,92345987 271,1804496 60,20 64 94 0,20488 0,79512 11101,86187 2274,54946 0,945626478 57,94826948 11,22689499 196,2335959 47,27 65 95 0,23305 0,76695 8827,31241 2057,20515 0,945626478 43,57052296 9,601995594 138,2853264 36,05 66 96 0,25962 0,74038 6770,10726 1757,65525 0,945626478 31,59944456 7,75777577 94,71480342 26,44 68 98 0,29173 0,70827 3572,87579	58	88	0,12131	0,87869	29538,97477	3583,37303	0,945626478	215,6365256	24,73651719	1025,863708	159,8567022
61 91 0,15243 0,84757 19174,63654 2922,78984 0,945626478 118,3621704 17,06094145 484,4080809 92,02 62 92 0,16454 0,83546 16251,84670 2674,07886 0,945626478 94,86546083 14,76043778 366,0459105 74,5 63 93 0,18235 0,81765 13577,76784 2475,90597 0,945626478 74,94685379 12,92345987 271,1804496 60,20 64 94 0,20488 0,79512 11101,86187 2274,54946 0,945626478 57,94826948 11,22689499 196,2335959 47,27 65 95 0,23305 0,76695 8827,31241 2057,20515 0,945626478 43,57052296 9,601995594 138,2853264 36,05 66 96 0,25962 0,74038 6770,10726 1757,65525 0,945626478 31,59944456 7,75777570 94,71480342 26,44 68 98 0,29173 0,70827 3572,87579 1042,31505 0,945626478 14,91217754	59	89	0,1345	0,8655	25955,60174	3491,02844	0,945626478	179,1750909	22,78869955	810,2271824	135,120185
62 92 0,16454 0,83546 16251,84670 2674,07886 0,945626478 94,86546083 14,76043778 366,0459105 74,9633499 63 93 0,18235 0,81765 13577,76784 2475,90597 0,945626478 74,94685379 12,92345987 271,1804496 60,20 64 94 0,20488 0,79512 11101,86187 2274,54946 0,945626478 57,94826948 11,22689499 196,2335959 47,27 65 95 0,23305 0,76695 8827,31241 2057,20515 0,945626478 43,57052296 9,601995594 138,2853264 36,05 66 96 0,25962 0,74038 6770,10726 1757,65525 0,945626478 31,59944456 7,757775707 94,71480342 26,44 67 97 0,2872 0,7128 5012,45201 1439,57622 0,945626478 22,12349574 6,008385805 63,11535886 18,69 68 98 0,29173 0,70827 3572,87579 1042,31505 0,945626478 14,91217754	60	90	0,14645	0,85355	22464,57330	3289,93676	0,945626478	146,6440106	20,30828875	631,0520915	112,3314855
63 93 0,18235 0,81765 13577,76784 64 94 0,20488 0,79512 11101,86187 2274,54946 0,945626478 74,94685379 12,92345987 271,1804496 60,20 65 95 0,23305 0,76695 8827,31241 2057,20515 0,945626478 43,57052296 9,601995594 138,2853264 36,05 66 96 0,25962 0,74038 6770,10726 1757,65525 0,945626478 31,59944456 7,75777577 94,71480342 26,44 67 97 0,2872 0,7128 5012,45201 1439,57622 0,945626478 22,12349574 6,008385805 63,11535886 18,69 68 98 0,29173 0,70827 3572,87579 1042,31505 0,945626478 14,91217754 4,113786796 40,99186312 12,68 70 100 0,33241 0,66759 1752,18556 582,44400 0,945626478 6,539469103 2,055588574 16,09212245 5,662 71 101 0,35918 <	61	91	0,15243	0,84757	19174,63654	2922,78984	0,945626478	118,3621704	17,06094145	484,4080809	92,02319675
63 93 0,18235 0,81765 13577,76784 64 94 0,20488 0,79512 11101,86187 65 95 0,23305 0,76695 8827,31241 66 96 0,25962 0,74038 6770,10726 67 97 0,2872 0,7128 5012,45201 68 98 0,29173 0,70827 3572,87579 69 99 0,30759 0,69241 2530,56074 70 100 0,33241 0,66759 1752,18556 71 101 0,35918 0,64082 1169,74156 72 102 0,38871 0,61129 749,59379 73 103 0,42124 0,57876 458,21919 74 104 0,45705 0,54295 265,19894	62	92	0,16454	0,83546	16251,84670	2674,07886	0,945626478	94,86546083	14,76043778	366,0459105	74,9622553
65 95 0,23305 0,76695 8827,31241 66 96 0,25962 0,74038 6770,10726 67 97 0,2872 0,7128 5012,45201 68 98 0,29173 0,70827 3572,87579 69 99 0,30759 0,69241 2530,56074 70 100 0,33241 0,66759 1752,18556 71 101 0,35918 0,64082 1169,74156 72 102 0,38871 0,61129 749,59379 73 103 0,42124 0,57876 458,21919 74 104 0,45705 0,54295 265,19894	63	93	0,18235	0,81765	13577,76784	2475,90597	0,945626478	74,94685379	12,92345987	271,1804496	60,20181752
65 95 0,23305 0,76695 8827,31241 66 96 0,25962 0,74038 6770,10726 67 97 0,2872 0,7128 5012,45201 68 98 0,29173 0,70827 3572,87579 69 99 0,30759 0,69241 2530,56074 70 100 0,33241 0,66759 1752,18556 71 101 0,35918 0,64082 1169,74156 72 102 0,38871 0,61129 749,59379 73 103 0,42124 0,57876 458,21919 74 104 0,45705 0,54295 265,19894	64	94	0,20488	0,79512	11101,86187	2274,54946	0,945626478	57,94826948	11,22689499	196,2335959	47,27835765
66 96 0,25962 0,74038 6770,10726 67 97 0,2872 0,7128 5012,45201 68 98 0,29173 0,70827 3572,87579 69 99 0,30759 0,69241 2530,56074 70 100 0,33241 0,66759 1752,18556 71 101 0,35918 0,64082 1169,74156 72 102 0,38871 0,61129 749,59379 73 103 0,42124 0,57876 458,21919 74 104 0,45705 0,54295 265,19894	65	95	0,23305	0,76695	8827,31241	2057,20515					36,05146266
67 97 0,2872 0,7128 5012,45201 68 98 0,29173 0,70827 3572,87579 69 99 0,30759 0,69241 2530,56074 70 100 0,33241 0,66759 1752,18556 71 101 0,35918 0,64082 1169,74156 72 102 0,38871 0,61129 749,59379 73 103 0,42124 0,57876 458,21919 74 104 0,45705 0,54295 265,19894	66	96	0,25962	0,74038	6770,10726		0,945626478		7,757775707		26,44946707
68 98 0,29173 0,70827 3572,87579 69 99 0,30759 0,69241 2530,56074 70 100 0,33241 0,66759 1752,18556 71 101 0,35918 0,64082 1169,74156 72 102 0,38871 0,61129 749,59379 73 103 0,42124 0,57876 458,21919 74 104 0,45705 0,54295 265,19894 1042,31505 0,945626478 14,91217754 4,113786796 40,99186312 12,688 14,91217754 4,113786796 40,99186312 12,905035035 26,07968558 8,569 582,44400 0,945626478 6,539469103 2,055588574 16,09212245 5,664 420,14777 0,945626478 4,128306559 1,402179799 9,552653347 3,608 291,37460 0,945626478 2,501656191 0,919544937 5,424346788 2,206 2,922690597 1,287 1,287 1,20918 0,945626478 0,791430303 0,342055067 1,476603202 0,711	67	97	0,2872	0,7128	5012,45201						18,69169136
69 99 0,30759 0,69241 2530,56074 778,37518 0,945626478 9,987563127 2,905035035 26,07968558 8,569 70 100 0,33241 0,66759 1752,18556 582,44400 0,945626478 6,539469103 2,055588574 16,09212245 5,664 71 101 0,35918 0,64082 1169,74156 420,14777 0,945626478 4,128306559 1,402179799 9,552653347 3,608 72 102 0,38871 0,61129 749,59379 291,37460 0,945626478 2,501656191 0,919544937 5,424346788 2,206 74 104 0,45705 0,54295 265,19894 121,20918 0,945626478 0,791430303 0,342055067 1,476603202 0,711	68	98	0,29173	0,70827	3572,87579						12,68330555
70 100 0,33241 0,66759 1752,18556 71 101 0,35918 0,64082 1169,74156 72 102 0,38871 0,61129 749,59379 73 103 0,42124 0,57876 458,21919 74 104 0,45705 0,54295 265,19894 582,44400 0,945626478 6,539469103 2,055588574 16,09212245 5,664 420,14777 0,945626478 4,128306559 1,402179799 9,552653347 3,608 291,37460 0,945626478 2,501656191 0,919544937 5,424346788 2,206 193,02025 0,945626478 1,446087395 0,576028226 2,922690597 1,287 121,20918 0,945626478 0,791430303 0,342055067 1,476603202 0,711	69	99	0,30759	0,69241	2530,56074					1	8,569518757
71 101 0,35918 0,64082 1169,74156 420,14777 0,945626478 4,128306559 1,402179799 9,552653347 3,608 72 102 0,38871 0,61129 749,59379 291,37460 0,945626478 2,501656191 0,919544937 5,424346788 2,206 73 103 0,42124 0,57876 458,21919 193,02025 0,945626478 1,446087395 0,576028226 2,922690597 1,287 74 104 0,45705 0,54295 265,19894 121,20918 0,945626478 0,791430303 0,342055067 1,476603202 0,711		100	0,33241	0,66759	1752,18556						5,664483722
72 102 0,38871 0,61129 749,59379 73 103 0,42124 0,57876 458,21919 74 104 0,45705 0,54295 265,19894 291,37460 0,945626478 2,501656191 0,919544937 5,424346788 2,206 193,02025 0,945626478 1,446087395 0,576028226 2,922690597 1,287 121,20918 0,945626478 0,791430303 0,342055067 1,476603202 0,711		101	0,35918	0,64082	1169,74156						3,608895148
73 103 0,42124 0,57876 458,21919 74 104 0,45705 0,54295 265,19894 193,02025 0,945626478 1,446087395 0,576028226 2,922690597 1,287 121,20918 0,945626478 0,791430303 0,342055067 1,476603202 0,711		102	0,38871	0,61129	749,59379		-	-	-	•	2,206715349
74 104 0,45705 0,54295 265,19894 121,20918 0,945626478 0,791430303 0,342055067 1,476603202 0,711		103	0,42124	0,57876	458,21919					1	1,287170412
121,20310 0,313020170 0,73130300 1,770003202 0,711			·				-		-		0,711142186
	75	105	0,4958	0,5042	143,98976	71,39012	0,945626478	0,406342383	0,190510208	0,685172899	0,369087119

76	106	0,53553	0,46447	72,59964
77	107	0,57626	0,42374	33,72035

38,87929	0,945626478	0,193737908	0,098111087	0,278830517	0,178576911
33,72035	0,945626478	0,085092608	0,080465824	0,085092608	0,080465824

Sitti Nurbaya lahir di Bontomarannu tanggal 25 Oktober 1993, Anak bungsuh dari Empat bersaudara. Merupakan anak dari ayah yang bernama Alm. Abd. Gaffar dan ibu Amina. Pendidikan dasar dasi dekolah SD. Impres Timbuseng dan lulus pada tahun 2006 kemudian, pada tahun yang sama melanjutkan pendidikan sekolah

menengah pertama di SMP Terbuka Negeri I Bontomarannu dan lulus pada tahun 2009 pada, tahun yang sama melanjutkan pendidikan sekolah menengah atas di SMA Negeri I Bontomarannu dan lulus pada tahun 2012. Dan pada tahun yang sama melanjutkan pendidikan di Universitas Islam Negeri Alauddin Makassar dengan menngikuti Seleksi Bersama Masuk Perguruan Tinggi Negeri (SBMPTN) kemudian lulus dan di terima pada jurusan Matematika Fakultas Sains dan Teknologi.