KARAKTERISASI MINERAL SILIKA (SiO2) BATUAN DI KECAMATAN POLONGBANGKENG UTARA KABUPATEN TAKALAR SULAWESI

SELATAN

Diajukan untuk Memenuhi Salah Satu Syarat Meraih Gelar Sarjana Sains Jurusan Kimia Fakultas Sains dan Teknologi UIN Alauddin Makassar

> Oleh: MEGERI DARMAWATI NIM: 60500116046

FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI ALAUDDIN MAKASSAR

2020

PERNYATAAN KEASLIAN SKRIPSI

Mahasiswa yang bertanda tangan dibawah ini:

Nama	: Darmawati
NIM	: 60500116046
Tempat/Tgl Lahir	: Maros/ 08 April 1998
Jurusan	: Kimia
Fakultas	: Sains dan Teknologi
Alamat	: JL. H. M. Yasin Limpo N0.36 Samata, Gowa
Judul	: Karakterisasi Mineral Silika (SiO2) Batuan di Kecamatan
	Polongbangkeng Utara Kabupaten Takalar Sulawesi Selatan

Menyatakan dengan sesungguhnya dan penuh kesadaran bahwa skripsi ini benar adalah hasil karya sendiri. Jika dikemudian hari terbukti bahwa skripsi ini merupakan duplikat, tiruan, plagiat atau dibuat orang lain, sebagian atau seluruhnya, maka skripsi dan gelar yang saya peroleh karenanya batal demi hukum.

Samata-Gowa

Oktober 2020

Penyusun

Darmawati NIM:60500116046

LEMBAR PENGESAHAN SKRIPSI

Skripsi yang berjudul **"Karakterisasi Mineral Silika (SiO₂) pada Batuan** Kecamatan Polongbangkeng Utara Kabupaten Takalar Sulawesi Selatan", yang disusun oleh Darmawati, NIM: 60500116046. mahasiswa jurusan kimia pada Fakultas Sains dan Teknologi UIN Alauddin Makassar, telah diuji dan dipertahankan dalam sidang munaqasyah yang diselenggarakan pada hari Kamis, 10 Desember 2020 bertepatan dengan 25 Rabiul Akhir 1442 H, dinyatakan telah dapat diterima sebagai salah satu syarat untuk memperoleh gelar Sarjana dalam Ilmu Kimia, Jurusan Kimia (dengan beberapa perbaikan).

> Samata-Gowa, 10 Desember 2020 M 25 Rabiul Akhir 1442 H

DEWAN PENGUJI

Ketua : Dr	. Muh. Ansh	ar Abubakar.	S.Pt., M.Si
------------	-------------	--------------	-------------

- Sekretaris : Dr. Asri Saleh, ST., M.Si
- Munaqisy I : Dra. Sitti Chadijah, S. Si., M.Si
- Munaqisy II : Dr. H. Aan Farhani, M.Ag., Lc
- Pembimbing I : Dr. Rismawaty Sikanna, S. Si., M.Si

Pembimbing II : Asriani Ilyas, S. Si., M. Si

Diketahui Oleh: Dekan Fakultas Sains dan Teknologi UIN Alauddin Makassar

KATA PENGANTAR

Alhamdulillah segala puji syukur penulis panjatkan kehadirat Allah swt atas limpahan rahmat dan kasih sayangnya penulis mampu menyelesaikan skripsi penelitian yang berjudul **"Karakterisasi Mineral Silika (SiO₂) Batuan di Kecamatan Polongbangkeng Utara Kabupaten Takalar Sulawesi Selatan"**. Salam dan Salawat senantiasa tercurakan kepada Nabi Muhammad saw yang senantiasa dengan kesabaran untuk membimbing umat menuju keadaan penuh ilmu. Sehingga melahirkan ilmuan-ilmuan muslim yang kontribusinya begitu besar bagi peradaban umat manusia. Proposal skripsi ini disusun sebagai salah satu syarat untuk melakukan penelitian di Jurusan Kimia Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Alauddin Makassar.

Penulis mengucapkan ucapan terimah kasih kepada semua pihak yang telah mendukung dalam menyelesaikan studi ini, penulis berterimah kasih terutama kepada kedua orang tua yang selalu memberikan doa dan dukungannya serta keluarga yang memberikan semangat dan motivasi. Penulis juga mengucapkan banyak terimah kasih kepada yang terhormat:

- Bapak Prof. Drs. Hamdan Juhannis M.A, Ph.D selaku rektor UIN Alauddin Makassar beserta wakil dan sejajarannya.
- Bapak Prof. Dr. Muhammad Halifah Mustami, M.Pd selaku dekan Fakultas Sains dan Teknologi UIN Alauddin Makassar beserta wakil dan sejajarannya.
- Bapak Dr. H. Asri Saleh, S.T., M.Si. selaku ketua jurusan Kimia Fakultas Sains dan Teknologi UIN Alauddin Makassar

- Ibu Dr. Rismawati Sikanna, M.Si selaku sekretaris jurusan Kimia dosen pembimbing I yang selalu membimbing dan memberikan masukan setiap bimbingan.
- 5. Ibu Asriani Ilyas, M.Si selaku pembimbing ke II yang telah membantu memperhatikan penulisan.
- Ibu Dra. Sitti Chadijah, M.Si selaku penguji saya yang telah memberikan masukan dan saran.
- 7. Seluruh dosen dan staf Fakultas Sains dan Teknologi UIN Alauddin Makassar terkhusus dosen dan staf jurusan kimia.
- 8. Seluruh laboran jurusan Kimia Fakultas Sains dan Teknologi UIN Alauddin Makassar terkhusus untuk kak Ahmad yani, S.Si yang telah mengajari kami dan membantu menyelesaikan penelitian ini.
- 9. Bapak dan Ibu dari staf Universitas Hasanuddin dan staf kampus Politeknik Negeri Ujung Pandang yang telah membantu menguji dan menganalisis sampel saya.
- Rekan penelitian saya yaitu Nurbaeti. HJ dan Nur Indah yang selalu menemani saya disetiap waktu penelitian. Teman-teman saya (kimia Angkatan 2016) Mujihadulhaq dan Harfendi yang telah membantu saya dalam pengambilan sampel.
- 11. Keluarga saya terutama mama saya (Hj. Najemia) dan Alm ayahanda saya (H.Muksin) serta saudara saya (Rasma dan Mirna) yang selalu memberikan semangat dan memberikan bantuan berupa dana penelitian sehingga berjalan lancar.

Akhir kata, semoga tulisan ini dapat memberikan manfaat kepada kita semua dan semoga segala aktifitas keseharian kita ternilai ibadah oleh Allah swt Aamiin Ya Rabbal Aalamiin.

Wabillahitaufik Wassa'adah, Wasalamualaikum Wr.Wb

Penulis,

Oktober 2020 Gowa,

<u>Darmawati</u>

DAFTAR ISI

1	Hal
JUDUL	i
PERNYATAAN KEASLIAN SKRIPSI	ii
PENGESAHAN SKRIPSI	iii
KATA PENGANTAR	iv
DAFTAR ISI	vii
DAFTAR GAMBAR	ix
DAFTAR TABEL	X
DAFTAR LAMPIRAN	xi
ABSTRAK	xii
ABSTRACK	xiii
BAB I PENDAHULUAN	1-7
A.Latar Belakang	1-7
B.Rumusan Masalah	6
C.Tujuan Penelitian	6
D.Manfaat Penelitian	6-7
BAB II TINJAUAN PUSTAKA	8-21
A.Batuan	8-10
B.Mineral Silika (SiO ₂)	10-12
C.Kristal	12-17
D.XRD (X-Ray Diffractometer)	17-19
E.XRF (X-Ray Flourescence)	19-21

BAB III METODE PENELITIAN	
A.Waktu dan Tempat	
B.Alat dan bahan	
C.Prosedur penelitian	22-24
1.Pengambilan Sampel	
2.Preparasi Sampel	
3.Karakterisasi XRD (X-Ray Diffraction)	23
4.Karakterisasi XRF (X-Ray Fluorescence)	24
BAB IV HASIL DAN PEMBAHASAN	25-32
A.Hasil Penelitian	25-27
1.Karakterisasi XRD	25-27
2.Karakterisasi XRF	27
B.Pembahasan	28-32
1.Karakterisasi XRD	28-30
2.Karakterisasi XRF	31-32
BAB V PENUTUP	33
A.Kesimpulan	33
B.Saran.	33
DAFTAR PUSTAKA	34-36
LAMPIRAN	37-80

DAFTAR GAMBAR

Gambar 2.1 Struktur kristal kubik	15
Gambar 2.2 Struktur kristal tetragonal	15
Gambar 2.3 Struktur Kristal Ortorombik	16
Gambar 2.4 Struktur kristal monoklinik	16
Gambar 2.5 Struktur kristal triklinik	16
Gambar 2.6 Struktur kristal Heksagonal	17
Gambar 2.7 Struktur kristal rhombohendral	17
Gambar 2.8 Spektrofotometer XRD	17
Gambar 2.9 Spektrofotometer XRF	20
Gambar 4.1 Grafik Hasil XRD	25
Gambar 4.2 Struktur kristal heksagonal	30

ALAUDDIN

DAFTAR TABEL

Tabel 4.1 Jenis mineral titik 1	26
Tabel 4.2 Jenis mineral titik 2	26
Tabel 4.3 Jenis mineral titik 3	26
Tabel 4.4 Jenis mineral titik 4	26
Tabel 4.5 Jenis mineral titik 5	26
Tabel 4.6 Struktur kristal dan unit sel.	27
Tabel 4.7 Komposisi mineral batuan	27
Tabel 4.8 Komposisi unsur mineral batuan	27

DAFTAR LAMPIRAN

Lampiran 1. Skema Kerja Penelitian	37
Lampiran 2. Skema Kerja	38-39
Lampiran 3. Hasil Analisis XRD dan XRF	40-74
Lampiran 4. Peta pengambilan sampel	75
Lampiran 5. Dokumentasi Penelitian	76-80

ABSTRAK

Nama	: Darmawati
NIM:	: 60500116046
Judul Skripsi	: Karakterisasi Mineral Silika (SiO2) Batuan Di Kecamatan
	Polongbangkeng Utara Kabupaten Takalar Sulawesi
	Selatan

Mineral menjadi sumber daya yang dapat ditemukan pada batuan yang melimpah hasilnya di Indonesia dan memiliki nilai ekonomi. Salah satu mineral yang banyak terkandung di dalam batuan yaitu silika. Penelitian ini bertujuan untuk mengetahui karakteristik mineral silikat (SiO₂) di kecamatan Polongbangkeng Utara, kabupaten Takalar. Di karakterisasi menggunakan alat X-Ray Diffraction (XRD) dan X-Ray Flourescence (XRF). Dari hasil karakterisasi XRD sampel titik 1 sampai sampel titik 5 terbentuk kristal trigonal (heksagonal axes) dan paencocokan hasil analisis XRD dengan software Search Match menghasilkan jenis-jenis mineral lain selain silika yaitu kalsium magnesium katena-silika (diopsida), hedenbergit, augit, aegirin, jadeit, cristobalit dan stishovit. Hasil analisis XRF komposisi kimia dari kelima sampel yaitu titik 1 57,13%, titik 2 56,36%, titik 3 56,30%, titik 4 56,82% dan titik 5 56,87%. Selain mineral silika terdapat senyawa lain yaitu Besi (III) Oksida (Fe₂O), Kalsium Oksida (CaO), Aluminium Oksida (Al₂O₃) dan kalium Oksida (K₂O) namun yang dominan terdapat dalam sampel yaitu mineral silika. Unsur silika tertinggi yaitu 26,71% pada titik 1 dan unsur lain yang terkandung yaitu Besi (Fe), Kalsium (Ca), Aluminium (Al) dan Kalium (K).

Kata Kunci: Mineral silika (SiO₂), Batuan, *X-Ray Diffraction* (XRD), *X-Ray Flourescence* (XRF).

ABSTRACT

Name	: Darmawati
NIM:	: 60500116046
Title of Thesis	:Characterization of Silica Minerals (SiO2) Rocks in North Polongbangkeng Sub-District of Takalar Regency of South Sulawesi

Minerals become a resource that can be found in rocks that are abundant in Indonesia and have economic value. One of the minerals contained in many rocks is silica. This research aims to find out the characteristics of silicate minerals (SiO2) in North Polongbangkeng sub-district, Takalar regency. Characterized using X-Ray Diffraction (XRD) and X-Ray Flourescence (XRF) tools. From xrd characterization of point 1 sample to point 5 sample formed trigonal crystals (hexagonal axes) and paencocokan xrd analysis results with Search Match software produce other types of minerals besides silica namely calcium magnesium katena-silica (diopsida), hedenbergit, augit, aegirin, jadeit, cristobalit and stishovit. The results of xrf analysis of chemical composition from all five samples were 1 point 57.13%, point 2 56.36%, point 3 56.30%, point 4 56.82% and point 5 56.87%. In addition to silica minerals there are other compounds namely Iron (III) Oxide (Fe2O), Calcium Oxide (CaO), Aluminum Oxide (Al2O3) and potassium Oxide (K2O) but the dominant one found in the sample is silica minerals. The highest silica element is 26.71% at point 1 and other elements contained are Iron (Fe), Calcium (Ca), Aluminum (Al) and Potassium (K).

Keywords: Mineral silica (SiO2), Rocks, X-Ray Diffraction (XRD), X-Ray Flourescence (XRF).

BAB I

PENDAHULUAN

A. Latar Belakang

Indonesia memiliki kekayaan yang melimpah baik itu keanekaragamannya maupun sumber daya mineral, tingginya kebutuhan masyarakat akan bangunan dan perumahan membuat kebutuhan bahan bangunan meningkat. Provinsi yang memiliki sumber daya mineral yang tinggi yaitu Sulawesi selatan khususnya di kabupaten Takalar tepatnya di daerah kecamatan Polongbangkeng Utara dimana terdapat penambangan batu yang dapat memenuhi kebutuhan masyarakat yang tidak terbatas dalam membangun rumah, gedung, dan yang lainnya.

Bertambahnya jumlah penduduk membuat kebutuhan sumber daya alam semakin tinggi sehingga dapat mengabaikan kerusakan di lingkungan sekitar. Seringkali dalam memanfaatkan dan memenuhi sumber daya alam untuk kebutuhan hidup masyarakat akan menjadi konsekuensi bagi masyarakat. Seperti pada penambangan batu.

Kebanyakan masyarakat menjual batuan secara mentah dari hasil penambangan batu dengan pengolahan yang sangat sederhana tanpa mengetahui kandungan lain atau mineral yang terkandung dari batuan tersebut. Batuan biasanya terdapat di gunung-gunung yang penuh berkah memiliki banyak kekayaan yang dapat kita manfaatkan karena Allah yang menciptakan segala sesuatu itu bermanfaat.

Sebagaimana firman Allah swt dalam Al-Quran surah Fathir (35) ayat 27"

Terjemahannya:

"Tidakkah kamu melihat bahwasanya Allah menurunkan hujan dari langit lalu kami hasilkan dengan hujan itu buah-buahan yang beraneka macam jenisnya, dan di antara gunung-gunung itu ada garis-garis putih dan merah yang beraneka macam warnanya dan ada (pula) yang hitam pekat.

Berdasarkan Tafsir Al-Misbah mengenai ayat Al-Quran di atas (Q.S Fathir (35) ayat 27) penafsiran ayat ini di mana ayat ini melanjutkan uraian tentang buktibukti kuasa Allah swt. Ia mengajak semua orang dengan menggunakan gaya pertanyaan untuk berpikir dan memperhatikan. Allah swt berfirman: wahai siapapun yang mampu melihat dan berpikir tidakkah kamu telah melihat bahwa Allah lah yang menurunkan air hujan dari langit. Lalu dengan sebab air hujan itu, muncullah berbagai jenis buah-buahan, ada yang merah dan kuning, ada yang mamis dan asam, dan ada yang baik dan buruk. Dan di antara gunung-gunung ada yang memiliki jalurjalur dan garis-garis berwarna putih dan merah yang kejelasan dan keburamannya berbeda satu sama lain dan di antara gunung-gunung ada garis-garis putih dan merah yang beranekaragam warnanya.

Kemukjizatan ayat ini dari segi ilmu pengetahuan sebenarnya bukan saja tampak ketika ia menyebutkan bahwa warna gunung yang bermacam-macam itu disebabkan adanya perbedaan materi-materi yang dikandung oleh bebatuan gununggunung itu. Jika materinya besi, maka warna dominannya adalah merah, jika materinya batu bara maka warna dominannya warna hitam, jika materinya perunggu maka gunung tersebut berwarna kehijau-hijauan dan seterusnya. Tidak hanya sampai di situ, kemukjizatan ayat ini sebenarnya sangat menonjol ketika ia mengaitkan adanya berbagai jenis buah-buahan meskipun pepohonannya disiram dengan air yang sama, dengan penciptaan gunung-gunung yang beraneka warna merah, putih atau hitam meskipun juga berasal dari suatu materi yang sama di dalam perut bumi. Materi ini, oleh para geologi, dinamakan magma yang muncul di berbagai kawasan bumi. Akan tetapi, karena kemunculan magma itu dari kedalaman yang berbeda, maka kandungannya menjadi berbeda pula. Magma yang berproses dari kedalaman yang berbeda, pada akhirnya, mengkristal membentuk gundukan-gundukan atau gununggunung yang beraneka ragam warna dan materinya (M. Quraish Shihab, 2009).

Ayat diatas mengisyaratkan bahwa pembentukan mineral atau endapan mineral pada suatu daerah dengan kondisi geologi tertentu sangat berhubungan dengan proses kejadian dan cara pengendapannya atau pembekuan magma (proses pendinginan), dan dapat juga terbentuk dari larutan-larutan dalam air atau proses penguapan (Makfiroh, dkk., 2012: 5). Mineral terbentuk dari proses diferensiasi atau pemisahan dan kristalisasi magma (proses isotermik, dalam hal ini selama proses pembentukan berlangsung akan mengeluarkan sejumlah tenaga panas) (Lamburu, dkk., 2017: 151).

Mineral menjadi sumber daya yang dapat ditemukan pada batuan yang melimpah jumlahnya di Indonesia yang apabila diolah akan menghasilkan logam dan berbagai bahan keperluan proses industri dan memiliki nilai ekonomi. Salah satu mineral yang banyak terkandung di dalam batuan yaitu silika sebagai mana yang kita ketahui silika terbentuk dari hasil pelapukan batuan yang mengandung mineral utama, seperti kuarsa dan feldspar, yang berwujud bubuk putih (Hayati, Rahma dan Astuti , 2015: 282).

Hal ini didukung oleh hasil penelitian Flint (1997) dalam Andreas dan Ardian (2018: 295), menyatakan komposisi magma mengandung sekitar 45% sampai 75% SiO₂. Untuk lava yang memiliki komposisi SiO₂ rendah dari 30% dan tinggi dari 80% sangat sedikit di temui, namun variasi tersebut dapat terbentuk bila magma

terasimilasi oleh batuan fragmen batuan sedimen dan batuan malihan atau ketika diferensiasi magma, sehingga menyebabkan komposisi magma berubah. Batuan dengan kandungan SiO₂ berkisar antara 50% membentuk batuan basal dan gabro. Batuan dengan kandungan SiO₂ sekitar 60% membentuk batuan beku andesit dan diorite dan batuan dengan kandungan SiO₂ sekitar 70% membentuk batuan riolit dan granit.

Daerah yang akan diidentifikasikan mineralnya berasal dari Kecamatan Polongbangkeng Utara Kabupaten Takalar. Secara umum di daerah ini merupakan daerah perbukitan yang dikelilingi pepohonan yang tumbuh di bukit serta semaksemak yang di mana batuannya bercampur dengan tanah yang berwarna merah. Ciri fisik dari batuan tambang ini diduga mengandung mineral silika karena dilihat dari ciri fisiknya yang berwarna hitam hingga keabu-abuan, pecahannya tidak terlalu rata dan juga telah dilakukan uji pendahuluan yang hasilnya mengandung silika sebanyak 65,23%. Dilihat dari ciri-ciri yang dimiliki Mineral silikat yaitu berwarna putih, kecoklatan, keabu-abuan, kekuning-kuningan, dan tidak berwarna, goresan berwarna putih, kekerasannya 3,5-5,0 Mohs, mengkilap seperti kaca, berat jenisnya 3.0-3,2 diafenitasnya yaitu transparan, pecahannya tidak terlalu rata, retakannya dan sistem kristalnya adalah heksagonal (Makfiroh, dkk., 2012: 6).

Hasil penelitian Kusumwati, dkk., (2018: 2), mengatakan bahwa mineral berwarna keabu-abuan didominasi oleh unsur Si sebesar 47,8% sedangkan mineral berwarna putih keemasan didominasi oleh unsur Si sebesar 39,9%. Batuan dapat diketahui kandungan mineralnya dengan menggunakan alat XRD (*X-Ray Diffractometer*) dan XRF (*X-Ray Flourescence*).

Metode XRD (*X-Ray Diffractometer*) digunakan untuk mengetahui karakterisasi dan mineral pada batuan dan juga dapat menentukan mineral-mineral hidrotermal atau mineral-mineral lempung yang terdapat didalam sampel batuan (Putri, dkk., 2018: 320), sedangkan metode XRF (*X-Ray Flourescence*) digunakan untuk menganalisis kandungan unsur atau logam di dalam sampel batuan dan memiliki beberapa keuntungan diantaranya biaya yang relatif murah, analisis cepat, multielemental, dan hasil analisisnya kualitatif dan kuantitatif (Jamaluddin dan Emi, 2018: 50).

Hasil Jalil, dkk., (2013: 18), mengidentifikasi fasa dengan XRD dari sampel ketiga Camp diperoleh hasil mineral yang terkandung di dalam batuan di lokasi penambangan emas desa Panggong, Kecamatan Krueng Sabee, Aceh Jaya adalah SiO₂, SO₃, Fe₂O₃ dan Al₂O₃. Dimana SiO₂ sebagai fasa utamanya. Sedangkan hasil XRF menunjukkan komposisi SiO₂ dari Camp 2 sebagai yang tertinggi (90.71%), diikuti Camp 3 (76.26%), Camp 4 (72.96%). Sari Rindang Kembar, (2016: 22), Hasil pengukuran menggunakan XRF ini memperlihatkan unsur SiO₂ yang terkandung dalam batuan tambang di Bukit 12 terbanyak yakni secara berturut-turut Silikon (Si) sebesar 62,176 %, sedangkan pengukuran dengan menggunakan metode XRD sampel batuan tambang bukit 12 menunjukkan bahwa sampel memiliki kandungan Silikon oksida (SiO₂). SiO₂ memiliki persentase paling besar (> 50%) dibandingkan dengan mineral yang lain. SiO₂ dikenal juga dengan nama kuarsa atau silikat. Penelitian (Alimin, dkk., 2016: 22), hasil analisis XRF kandungan SiO₂ sebesar 20,7%.

Berdasarkan hasil penelitian Dirk, Mesker H. J, 2008: 27 dalam Andreas dan Ardian (2018: 27), geokimia dari gunung api Tampomas menyimpulkan bahwa

batuan dari gunung tersebut tergolong ke dalam seri kalium andesit basal dan andesit dengan kandungan SiO₂=48,59%-60,49%. Sedangkan hasil uji XRF Andreas dan Ardian, (2018: 293), menunjukkan bahwa batuan Gunung Gamalama mengandung 58,485% silika dan dikelompokkan sebagai batuan beku andesit dan diorit dan batuan Gunung Talang mengandung 75,438% silika dan dikelompokkan sebagai batuan beku riolit. Menurut latar belakang diatas dan beberapa hasil penelitian dapat disimpulkan bahwa pada daerah bukit ataupun gunung yang memiliki ciri fisik batuan berwarna abu-abu gelap atau terang mengandung silika yang cukup tinggi dan memiliki kandungan mineral silika (SiO₂) yang berbeda setiap daerah tergantung kondisi geologinya. Sehingga perlu dilakukan penelitian di daerah bukit Kecamatan Polongbangkeng Utara, Kabupaten Takalar Sulawesi Selatan untuk mengetahui karakteristik batuannya.

B. Rumusan Masalah

Rumusan masalah pada penelitian ini yaitu bagaimana karakterisasi batuan mineral silikat (SiO₂) di kecamatan Polongbangkeng Utara, kabupaten Takalar

C. Tujuan

Tujuan pada penelitian ini yaitu untuk mengetahui karakteristik mineral silikat dioksida (SiO₂) di kecamatan Polombangkeng Utara, kabupaten Takalar.

D. Manfaat Penelitian

Dengan melakukan penelitian ini maka manfaat yang diperoleh sebagai berikut:

1. Dapat dijadikan sebagai informasi bagi masyarakat mengenai kandungan mineral batuan di kecamatan Polongbangkeng Kabupaten Takalar

2. Dapat dijadikan sebagai bahan informasi kepada pihak pengelolah sumber daya alam dan mineral untuk dimanfaatkan dalam berbagai macam kepenting

BAB II

TINJAUAN PUSTAKA

A. Batuan

Batuan merupakan benda yang berasal dari alam sebagai penyusun utama bumi. Secara umum batuan adalah campuran dari satu atau lebih mineral berbeda yang terbentuk secara alami melalui proses tertentu yang terdapat pada kulit bumi (sifatnya massif/terkonsolidasi dan tidak homogen). Batuan berbentuk benda padat yang tesusun secara alami yang tersusun dari mineral dan mineralaoid. Di dalam batuan terdapat banyak unsur yang tersusun dari unsur-unsur mineral dan mineralaoid sehingga menjadi satu kesatuan (Safitri dan Muh Arafatir, 2018: 50).

Batuan sebagai bahan membuat bagunan atau pondasi yang dapat ditemukan di alam dalam bentuk yang berbeda-beda. Batuan dapat dijumpai dimana-mana baik itu di gunung maupun di sungai. Batuan dapat dipecah menjadi batu kerikil seperti pada penambang batu di Kab Takalar yang mengolah kembali batuan dari tambang menjadi batu yang berukuran kecil/ kerikil atau biasa disebut agrerat. Untuk mengetahui asal-usul batuan (petrogenesa) perlu diperhatikan komposisi kimia, mineralogi, fabrik dan asosiasi batuan tersebut di lapangan. Komposisi mineralogi menunjukkan keadaan tekanan (P), temperatur (T) dan komposisi kimia (X) pada kondisi kesetimbangan akhir yang stabil dalam suatu sistim magma. Komposisi kimia

Berdasarkan hasil penelitian yang dilakukan oleh (Patya, dkk., 2018: 6), Menurut nilai suseptibilitasnya daerah Laut Sulawesi ini didominasi tersusun atas batuan beku andesit dan basal yang memiliki nilai suseptibilitas 0,068333 SI sampai dengan 0,065333. Hal ini menunjukan menurut keadaan litotektoniknya daerah Laut Sulawesi ini merupakan daerah Mandala Barat sebagai busur magmatik yang batuan penyusunnya bersifat andesitik dan basaltik.

Menurut penelitian (Safitri dan Muh Arafatir, 2018: 50). Batuan dibagi menjadi tiga bagian yaitu batuan beku, batuan sedimen, dan batuan metamorf yang dimana ketiga batuan ini dapat dibedakan berdasarkan proses pembentukannya.

1. Batuan beku

Merupakan batuan yang terbentuk dari magma yang mengeras dan tanpa proses kristalisasi. Proses pembentukan batuan ini terjadi di dua permukaan yaitu di bawah permukaan sebagai batuan intrusif (plutonik) dan di atas permukaan ekstrusif (vulkanik). Magma terbentuk dari batuan setengah cair dan kenaikan temperatur, penurunan tekanan, dan perubahan komposisi dapat menyebabkan proses pelelehan terjadi. Magma yang mengalami penurunan suhu akibat muncul ke permukaan bumi akan terbentuk mineral-mineral yang dinamakan penghabluran.

2. Batuan sedimen

Merupakan batuan yang terbentuk pada permukaan bumi dengan temperatur dan tekanan yang rendah. Batuan sedimen terbentuk akibat adanya batuan yang lebih dahulu terbentuk dan terjadi pelapukan sehingga terjadi erosi yang kemudian diangkat oleh air, angin, dan es yang selanjutnya mengendap dan diakumulasi ke dalam cekungan pengendapan sehingga terjadi sedimen. Material sedimen ini mengalami beberapa proses yaitu kompaksi, mengeras, dan mengalami litifikasi sehingga membentuk batuan sedimen.

3. Batuan metamorf

Merupakan batuan yang terbentuk dari hasil teransformasi atau ubahan dari suatu tipe yang sudah ada yang disebut dengan proses metamorfisme yang berarti perubahan bentuk.

B. Mineral Silika (SiO₂)

Silika (SiO₂) merupakan senyawa terbanyak penyusun kerak bumi pada saat ini yaitu sebesar 60,6%. Silika bisa didapatkan dari pasir, batuan maupun tanah silika yang jumlahnya melimpah di Indonesia atau dari limbah penghancuran gelas dan kaca, juga dari bahan organik seperti abu sekam padi, dan abu tebu. Dalam bentuk aplikasinya, silika seringkali dibuat dalam bentuk gelas, kristal, gel, aerogel, fumed silika dan silika koloid (Aerosil). Silika dalam Tabel periodik temasuk IV yang memiliki sifat ketahanan abrasi yang baik, isolator listrik yang baik, dan stabilitas termal yang tinggi (Dyana dan Triwikantoro, 2017: 14).

Endapan mineral di suatu daerah pada kondisi geologi tertentu sangat berhubungan dengan proses kejadian dan cara pengendapannya. Mineral biasanya produk deposit dari proses diferensiasi (pemisahan) dan kristalisasi magma (proses isotermik, dalam hal ini selama proses pembentukan berlangsung akan dilepaskan sejumlah tenaga panas). Produk yang terbentuk pada saat pembentukan batuan beku akan berakhir disertai dengan peningkatan konsentrasi mineral logam. Kemajuan teknologi yang semakin pesat menuntut tersedianya bahan baku yang memadai. Akhirnya, kebutuhan terhadap sumber daya mineral khususnya besi pun ikut meningkat, baik dalam jumlah maupun jenisnya (Lamburu, dkk., 2017: 151).

Silika (SiO₂), hadir sebagai kalsedon dan kuarsa, hadir sebagai mineral pengisi rekahan dan mineral pengganti (replacement mineral) yang berasosiasi

dengan kalsit, pirit, mineral lempung dan klorit. Sebagian kuarsa yang hadir sebagai mineral pengganti dari fenokrist plagioklas dan piroksen. kalsedon stabil pada temperature 120°C -180°C (Sunarwan Bambang, 2010: 27). Kuarsa sebagai mineral ringan yang mempunyai berat jenis kurang dari 2.87 dan merupakan mineral yang sangat umum terdapat pada kerak bumi, SiO₂ merupakan mineral yang sangat penting dalam pembentukan batuan beku. Kuarsa umumnya bening, tetapi kadang putih kekuningan agak kotor bentuk tak beraturan sampai denga membulat tanggung. Kuarsa didapatkan pada 127 contoh yang dianalisis, dengan kandungan yang bervariasi (28,31% -99%), dengan rata-rata kandungan diatas 50 % (Setiady dan A. Sianipar, 2009: 157).

Silika terbentuk dari hasil pelapukan batuan yang mengandung mineral utama, seperti kuarsa dan feldspar, yang berwujud bubuk putih. Silika merupakan senyawa yang tidak reaktif dan hanya dapat dilarutkan dalam asam kuat, contohnya dengan menggunakan asam klorida (HCl). Silika mempunyai tiga bentuk kristal yaitu *quartz*, *cristobalite* dan *trydimite* (Hadi, dkk., 2011: 2). Partikel silika memiliki peran yang berbeda-beda untuk masing-masing produk yang dihasilkan, dimana kualitas produk ditentukan dari ukuran dan distribusi ukuran partikel silika itu sendiri di dalam sistemnya (Zawrah, dkk., 2009). Selain itu juga dapat diaplikasikan sebagai bahan filler untuk pembuatan keramik, dimana filler berguna untuk memperkuat keramik karena filler tersebut dapat mengisi kekosongan pada matriks (Hayati dan Astuti, dkk., 2015: 283).

Silika (SiO₂) tersusun atas atom silikon dan oksigen yang berasal dari fluida hidrotermal yang diendapkan ketika fluida mencapai titik jenuh. Endapan ini dapat digunakan sebagai indikator yang baik bagi keberadaan reservoir bersuhu lebih dari 175°C. Kelarutan berbagai jenis silika merupakan fungsi terhadap temperatur. Kelarutan silika terutama kuarsa dan amorf, tidak dipengaruhi oleh tekanan dan garam terlarut, sehingga kondisi ini memungkinkan untuk menggunakan parameter fisis silika untuk mengetahui kondisi fluida panas bumi (Endovani, R. dan Adrian Putra, 2016: 65-66).

Silika merupakan suatu padatan berpori, struktur berpori ini berhubungan dengan luas permukaan, semakin kecil ukuran pori-pori silika mengakibatkan luas permukaan semakin besar sehingga kemampuan adsorpsi bertambah.Selain itu, silika mempunyai sifat unik yang tidak dimiliki oleh senyawa anorganik lainnya, seperti sifat inert, sifat adsorpsi dan pertukaran ion yang baik, mudah dimodifikasi dengan senyawa kimia tertentu untuk meningkatkan kinerjanya, kestabilan mekanik dan kestabilan termal tinggi, serta dapat digunakan untuk prekonsentrasi atau pemisahan analit kerena proses pengikatan analit pada permukaan silika bersifat reversible. Silika yang digunakan dalam penelitian ini merupakan silika hasil karakterisasi. Permukaan silika yang dikarakterisasi menyebabkan hadirnya gugus silanol (-SiOH) dan siloksan (Si-O-Si) yang memungkinkan dapat mengikat ion logam secara lebih selektif dengan mekanisme tertentu (Hardyanti, dkk., 2017: 39). Beberapa orang juga menganggap silika termasuk SiO2 yang terhidrasi. Ada banyak bentuk SiO2 yang memiliki urutan jarak jauh dan jarak pendek dan diakui sebagai fase kristal di antaranya adalah kuarsa, cristobalite, dan tridymite (Deane K. Smith, 1998: 2).

C. Kristal

Kristal adalah suatu padatan molekul atom atau ion penyusunnya tersusun atas dalam suatu pola tertentu. Suatu kristal mempunyai jumlah muka (*crystal faces*) tertentu dengan sudut antar muka (*interfacial angle*) yang tertentu pula. Kristal dapat tumbuh menjadi berbagai macam bentuk dengan tetap mempertahankan jumlah muka, dan sudut antar muka yang sama (Fachry, dkk., 2008: 11). Kristal memiliki susunan berulang dan jarak yang teratur dalam tiga dimensi. Pada hubungan lokal yang teratur, suatu kristal harus memiliki retang yang panjang sebagai karakteristik dari bentuk kristal tersebut (Fiqry, dkk., 2017: 77),

Menurut penelitian Fiqry, dkk., (2017: 77), berdasarkan keteraturan panjang jarak susunan atom-atom atau molekul-molekul zat padat, maka kristal dibagi menjadi 2 yaitu:

- 1. Monokristal (kristal tunggal), yaitu kristal yang memiliki keteraturan panjang jarak susunan atom-atom dan memiliki periodisitas yang tidak berhingga ke segala arah.
- Polikristal adalah kristal yang memiliki keteraturan, dengan panjang (jarak) susunan atom-atom hanya terbatas pada daerah-daerah tertentu di dalam kristal zat padat.

Daerah dengan keteraturan atom-atom ini disebut butiran (grain). Dalam sistem tiga dimensi kristal dikelompokkan menjadi tujuh sistem kristal, yaitu kubik, monoklinik, triklinik, tetragonal, orthorombik, trigonal, dan heksagonal.

Suatu kristal heksagonal memiliki parameter kisi: a = b, c, $\alpha = \beta = 90o$, $\gamma = 120o$. Material logam silikat mesopori-mesostruktur memiliki struktur amorf secara struktur rentang pendek, tetapi secara rentang panjang memiliki struktur kristalin, dengan demikian material heksagonal mesopori-mesostruktur yang berupa suatu lorong merupakan material 2 dimensi dengan parameter kisi a = b, sedangkan $c = \infty$ (tak terbatas). Atas dasar tersebut grup bidang material heksagonal mesopori-mesostruktur termasuk dalam grup bidang sistem bidimensional, dimana untuk

heksagonal dua dimensi terdiri dari 2 grup bidang yaitu p6 atau p6mm8). Adanya kisi $c = \alpha$ pada material heksagonal mesopori-mesostruktur di atas, mengakibatkan bidang bidang kristal yang dimiliki atau muncul pada difraktogram, hanya bidang kristal (hk0). Berbagai jenis heksagonal logam silikat mesopori-mesostruktur yang telah ditemukan terdiri dua jenis grup bidang yaitu p6 dan P63/mmc9). Dari kedua grup bidang tersebut, p6 merupakan grup bidang untuk struktur dua dimensi, sedangkan P63/mmc untuk struktur tiga dimensi (Sutrisno, dkk., 2005: 71).

Struktur kristal mempelajari tentang susunan khas atom-atom dalam kristal. Struktur kristal dapat digambarkan dalam bentuk kisi, dimana setiap titik kisi akan ditempati oleh atom atau sekumpulan atom. Hubungan titik-titik kisi kristal dalam bentuk bangun ruang (solid) disebut geometri kisi kristal. Terdapat tujuh tipe kisi kristal yaitu Triklinik, Monoklinik, Orthombik, Tetragonal, Kubik, Trigonal dan Heksagonal, ketujuh tipe kristal tersebut disebut tipe kisi tiga dimensi karena kisinya dgambarkan dalam bentuk bangun ruang (solid). Berdasarkan hal tersebut karakteristik materi geometri kisi kristal adalah materi yang mengharuskan penjelasan menggunakan model-model tiga dimensi

Jenis yang ketiga adalah struktur heksagonal atau sering disebut dengan struktur bahan hexaferrite. Bahan hexaferrite bila ditinjau dari struktur kristalnya dapat dibedakan menjadi 6 (enam) tipe, yaitu tipe M, W, Y, Z, X, dan U. Tipe M disebut juga dengan struktur magnetoplumbit. Tipe M yang paling popular adalah BaO.Fe₂O₃ yang tersusun atas 2 blok spinnel untuk membentuk struktur Fe6O8 dalam susunan S dan S*, dan blok R yang berisi ion Barium dan ion Oksigen membentuk struktur BaFe₆O₁₁. Sehingga struktur kristal tipe M ini berisi ion-ion yang tersusun secara RSR*S*. Jumlah perbandingan antara BaO dan Fe₂O₃ tipe M konvensional ini memiliki rasio sebesar 1 : 6. Hexaferrite tipe M ini juga memiliki medan anisotropi (Ha) sangat tinggi hingga mencapai 35 kG dan konstanta anisotropi kristal sebesar 3,3 x 105 Jm-3. Sehingga berpotensi untuk digunakan sebagai magnet permanen dengan menghasilkan energy produk maksimum magnet sebesar 45,26 kJ.m-3. Senyawa lain yang memiliki struktur Hexaferrite tipe M ini adalah SrO. Fe₂O₃ yang juga memiliki perbandingan mol antara SrO dengan Fe₂O₃ sebesar 1 : 6. Karakteristik fisis yaitu jari-jari atom, kovalen, dan kerapatan atomiknya dari atom stronsium jauh lebih kecil dibandingkan dengan atom barium, sehingga sangat menarik untuk dipahami struktur kristal bahan ini dibandingkan dengan BaO.Fe₂O₃ (Muljadi, dkk., 2013: 43).

Menurut Smallman dan Bioshop (2000:16), bentuk-bentuk kristal adalah sebagai berikut:

1. Kubik memiliki sumbu $a_1=a_2=a_3$ dengan semua sudut sumbu 90°.

Gambar 2.1 Struktur Kristal Kubik

2. Tetragonal memiliki sumbu $a_1=a_2 \neq c$ dengan semua sudut sumbu 90°.

Gambar 2.2 Struktur Kristal Tetragonal

3. Ortorombik memiliki sumbu $a_1 \neq a_2 \neq c$ dengan semua sudut sumbu 90°.

Gambar 2.3 Struktur Kristal Ortorombik

4. Monoklinik memiliki sumbu $a_1 \neq a_2 \neq c$ dengan dua sudut sumbu 90° dan satu

sudut $\neq 90^{\circ}$.

Gambar 2.4 Struktur Kristal Monoklinik

- 5. Triklinik memiliki sumbu $a_1 \neq a_2 \neq c$ semua sudut berbeda tidak sama dengan
 - 90°.

Gambar 2.5 Struktur Kristal Triklinik

6. Heksagonal memiliki sumbu $a_1=a_2=a_3 \neq c$ dengan sudut-sudut 90° dan 120°.

Gambar 2.6 Struktur Kristal Heksagonal

 Rhombohedral memiliki sumbu a₁=a₂=a₃ dengan semua sudut sama tetapi bukan 90°.

Gambar 2.7 Struktur Kristal Rhombohedral

D. X-Ray Diffraction (XRD)

Spektroskopi XRD merupakan teknik menganalisis kandungan mineral, baik fasa maupun struktur kristal suatu material dengan dasar interaksi sinar-x dengan material analit. Prinsip dasar dari instrumen XRD ini yaitu dengan menggunakan hukum Bragg. Hukum Bragg ini mengatakan bahwa perbedaan lintasan berkas difraksi sinar-x harus merupakan kelipatan panjang gelombang (Alimin, dkk., 2016: 21).

Gambar 2.8. Spektrofotometer XRD

Prinsip kerja dari alat XRD yaitu terdiri dari tiga bagian utama, yaitu tabung sinar-x, tempat objek, dan detektor sinar-x. sinar-x ini dihasilkan dari tabung sinar-x yang di dalamnya berisi katoda memanaskan filament, sehingga dapat menghasilkan elektron. Apabila terjadi perbedaan tegangan akan mempercepat elektron sehingga menembaki objek. Apabila elektron memiliki tingkat energi tinggi dan menabrak elektron dalam objek sehingga menghasilkan pancaran sinar-x. sehingga objek dan detektor akan berputar menangkap dan merekam intensitas refleksi sinar-x. Detektor memiliki fungsi merekam dan memproses sinyal sinar-x dan mengolahnya dalam bentuk grafik (Ratnasari, 2009: 3).

Difraksi sinar-X digunakan untuk mengidentifikasi struktur kristal suatu padatan dengan membandingkan nilai jarak d (bidang kristal) dan intensitas puncak difraksi dengan data standar. Difraksi sinar X oleh sebuah material terjadi akibat dua fenomena yaitu hamburan oleh tiap atom. Interfensi gelombang-gelombang oleh tiap atom-atom tersebut. Interfensi ini terjadi karena gelombang-gelombang yang dihamburkan oleh atom memiliki koherensi dengan gelombang datang dan demikian pula dengan mereka sendiri (Pratapa, 2004). Apabila suatu bahan dikenai sinar-X maka intensitas sinar-X yang ditransmisikan lebih kecil dari intensitas sinar datang. Hal ini disebabkan adanya penyerapan oleh bahan dan juga penghamburan oleh atomatom dalam material tersebut. Berkas sinar yang dihantarkan tersebut ada yang saling menghilangkan karena fasenya berbeda dan ada juga yang saling menguatkan karena fasenya sama (Sari, R.K, 2016: 18).

X-Ray Diffractometer atau XRD digunakan untuk digunakan untuk mendeteksi senyawa kristal di dalam bahan dan mengkarakterisasi struktur dari batuan ditinjau dari fasa dan ukuran butir sampel batuan tambang. Sebelum sampel

dikarakterisasi dengan XRD, sampel terlebih dahulu dipreparasi. Tiga komponen dasar pada *X-ray diffractometer* yaitu sinar-X, tempat sampel dan detektor yang terletak pada suatu lingkaran yang sejajar dengan lingkaran fokus. Secara umum *x-ray diffration* memiliki prinsip kerja yang terdiri dari tiga bagian utama yaitu tabung sinar-x, tempat objek, dan detektor sinar-x. Pola difraktogram yang dihasilkan berupa deretan puncak-puncak difraksi dengan intensitas relatif bervariasi sepanjang nilai 20 tertentu. Besarnya intensitas relatif dari deretan puncak-puncak tersebut bergantung pada jumlah atom atau ion yang ada dan distribusinya di dalam sel satuan material tersebut (Sari, R.K., 2016: 18).

E. X-Ray Fluorescence (XRF)

Spektrometer XRF adalah alat uji yang digunakan untuk analisis unsur yang terkandung dalam bahan secara kualitatif maupun kuantitatif. Pada analisis kualitatif mampu memberikan informasi jenis unsur yang terdapat atau terkandung di dalam sampel yang di analisis, yang menunjukkan adanya spektrum unsur pada energy sinar-x karakteristiknya. Analisis kualitatif ditunjukkan oleh puncak spektrum yang mewakili jenis unsur sesuai dengan energy sinar-X karakteristiknya. Sedangkan pada analisis kuantitatif mampu memberikan informasi jumlah unsur yang terdapat atau terkandung di dalam sampel yang ditunjukkan oleh ketinggian puncak spektrum. Analisis dengan menggunakan XRF adalah alat yang digunakan berdasarkan identifikasi dan pencacahan karakteristik sinar-X yang terjadi dari peristiwa efekfotolistrik. Analisis kuantitatif diperoleh dengan cara membandingkan intensitas sampel dengan standar (Jamaludin dan Darma, 2012: 20).

Sementara itu difraksi sinar-X dilakukan untuk mengetahui struktur kristal yang terbentuk pada sampel. Sampel batuan yang sudah digerus dimasukkan dalam plat sampel. Plat sampel diletakkan pada tempat sampel dalam alat XRD. Pengamatan intensitas yang dihamburkan dimulai dari sudut difraksi $\theta = 00$ sampai 600. XRD digunakan untuk mendeteksi senyawa kristal di dalam bahan dan mengkarakterisasi struktur dari batuan tambang (Sari, R.K, 2016: 17).

Gambar 2.9. Spektrofotometer XRF

Prinsip pengukuran XRF berdasarkan terjadinya proses eksitasi elektron pada kulit atom bagian dalam ketika atom suatu unsur tersebut dikenai sinar-X, kekosongan elektron tersebut akan diisi oleh elektron bagian luar dengan melepaskan energi yang spesifik untuk setiap unsur (Saksono, 2002). Elektron dari kulit yang lebih tinggi akan mengisi kekosongan tersebut. Perbedaan energi dari dua kulit itu muncul sebagai sinar-X yang dipancarkan oleh atom spektrum sinar-X selama proses tersebut menunjukkan puncak yang karakteristik, dimana setiap unsur akan menunjukkan puncak karakteristik yang merupakan landasan dari uji kualitatif untuk unsur-unsur yang ada (Sari, R.K, 2016: 17).

Prinsip kerja alat XRF sinar-x fluoresensi yang dipancarkan oleh sampel dihasilkan dari penyinaran sampel dengan sinar-x primer dari tabung sinar-x (*X-Ray Tube*), yang dibangkitkan dengan energi listrik dari sumber tegangan sebesar 1200 volt. Bila radiasi dari tabung sinar-x mengenai suatu bahan maka elektron dalam bahan tersebut akan tereksitasi ke tingkat energi yang lebih rendah, sambil

memancarkan sinar-x karakteristik. Sinar-x karakteristik ini ditangkap oleh detektor diubah ke dalam sinyal tegangan, diperkuat oleh Preamp dan dimasukkan ke analizer untuk diolah datanya. Energi maksimum sinar-x primer (keV) tergantung pada tegangan listrik (kVolt) dan kuat arus (µAmpere). Fluoresensi sinar-x tersebut terdeteksi oleh detektor SiLi (Jamaludin dan Darma, 2012: 22).

Hasil XRF berupa spektrum hubungan energi eksitasi dan intensitas sinar-X. Energi aktivasi menunjukkan unsur penyusun sampel dan intensitas menunjukkan nilai kualitas dari unsur tersebut. Semakin intensitasnya maka semakin tinggi pula persentase unsur tersebut dalam sampel (Jamaluddin, 2007). Metode XRF akan memberikan nilai intensitas secara total dari unsur tertentu dalam semua bentuk senyawa (Saksono, 2002). Metode XRF secara luas digunakan untuk menentukan komposisi unsur suatu material. Tergantung pada penggunaannya, XRF dapat dihasilkan tidak hanya oleh sinar-X tetapi juga eksitasi primer yang lain seperti partikel alfa, proton atau sumber elektron dengan energy yang tinggi. (Vicklun, 2008)

> ALAUDDIN M A K A S S A R

BAB III

METODELOGI PENELITIAN

A. Tempat dan Waktu Penelitian

Penelitian telah dilaksanakan di Laboratorium Kimia Anorganik dan Fakultas Sains dan Teknologi, Universitas Islam Negeri Alauddin Makassar, Laboratorium Politeknik Negeri Ujung Pandang untuk pengujian XRD dan Laboratorium Universitas Hasanuddin (UNHAS) Makassar untuk pengujian XRF pada bulan Februari 2020- Juli 2020.

B. Alat dan bahan

1. Alat

Alat-alat yang digunakan pada penelitian ini X-Ray Diffraction (XRD), X-ray Fluorescence (XRF), Global Positioning System (GPS), sieve shaker, timbangan digital, meteran, martil, lumpang dan alu, wadah tempat sampel dan label.

2. Bahan UNIVERSITAS ISLAM NE

Bahan yang digunakan pada penelitian ini yaitu aquades (H₂O) dan sampel batuan.

C. Prosedur kerja

1. Pengambilan Sampel

Lokasi pengambilan sampel yaitu di Kecamatan Polongbangkeng Utara, Kabupaten Takalar, Sulawesi Selatan. Sebelum sampel diambil terlebih dahulu ditentukan titik-titik pengambilan sampel menggunakan *Global Position System* (GPS) dan diukur jarak setiap titik dengan panjang 20 meter dengan arah mata angin barat, selatan, timur, utara dan titik tengah. Setelah mendapat 5 titik sampel, selanjutnya sampel batuan diambil dalam bentuk bongkahan batuan (Widiyastuti, 2016: 10-11) menggunakan palu dengan kedalaman 50 cm.

2. Preparasi Sampel

Dicuci bongkahan batu untuk menghilangkan kotoran yang melekat, selanjutnya dikeringkan dalam oven selama 1 jam pada suhu 100°C. kemudian dihancurkan sampel batuan menggunakan palu menjadi bongkahan-bongkahan kecil, kemudian bonghakan kecil batuan dihaluskan menggunakan tumpang dan alu sehingga menjadi serbuk halus. Selanjutnya serbuk diayak menggunakan ayakan 230 mesh sampai diperoleh ukuran serbuk yang lebih kecil (Aminah, 2018). Selanjutnya dikarakterisasi menggunakan XRD dan XRF.

3. Karakterisasi

a. XRD (X-Ray Diffraction)

Karakterisasi menggunakan XRD untuk menentukan fasa mineral, struktur kristal dan ukuran kristal dari mineral (SiO₂) pada batuan (Andreas dan Adrian, 2018: 295), sampel batu yang lolos ayakan 230 mesh dikeringkan kemudian masing-masing ditimbang sebanyak 3 gram. Sampel berupa serbuk dimasukkan ke dalam *sample holder* lalu diratakan permukaannya, dimampatkan dan diratakan dengan menggunakan alat *pressing* (Alimin, dkk., 2016: 21). Kemudian tempat sampel ditempatkan pada pemegang sampel dan diukur dengan dikenai difraksi sinar-X pada sudut $2\Theta = 2,5-60^{\circ}$ (Sari, 2016).
b. XRF (X-Ray Fluorescence)

Karakterisasi sampel batu dilakukan menggunakan XRF untuk mengetahui komposisi unsur kimia mineral dalam sampel. Dimasukkan sampel batu yang berukuran 230 mesh masing-masing sebanyak 3 gram ke dalam holder, kemudian sampel dianalisis dengan XRF (Qadri dan Adrian, 2018).

BAB IV

HASIL DAN PEMBAHASAN

A. Hasil Penelitian 1. Hasil karakterisasi X-Ray Difraction (XRD) C 950 900 650 750 750 650 650 550 550 450 450 350 250 250 250 250 150 0,0 0 0 O 00 11 O 1 11 11 11 1 11 11 11 11 11 11 11 11 IBBI 1 10 0 10 10 1110 (a) (c) Ο 900 850 600 750 600 500 450 450 400 350 250 200 150 900 850 800 750 700 O $\cap O($ 0 00 (b) (d) 0 000 00 (e)

Gambar 4. 1. Grafik hasil XRD (a) titik 1, (b) titik 2, (c) titik 3, (d) titik 4 dan (e) titik 5

Data hasil pengukuran	Database mineral	Jenis mineral
<u> </u>	<u>20 (°)</u>	77 1 ' '
13,/5	13,/3	Kalsium magnesium
		katena-silika
20.00	20.04	(diopsida)
20,00	20,04	hedenbergit
20,38	20,41	jadeit
35,65	35,65	augit
Tabel 4	1. 2. jenis mineral titik	2
Data hasil pengukuran	Database mineral	Jenis mineral
2e (⁰)	2e (⁰)	
13,72	13,73	Diopsida
20,00	20,04	Hedenbergit
20,37	20,41	Jadeit
19,51	20,04	Augit
29,79	<mark>29,</mark> 72	aegirin
Tabel 4.	. 3. jenis mineral titik	x 3
Data hasil pengukuran	Database mineral	Jenis mineral
2 • (⁰)	2 0 (⁰)	
13,59	13,73	Diopsida
26,88	26,85	Hedenbergit
19,81	19,76	Jadeit
30,76	30,73	Augit
13,59	13,50	aegirin
Tabel 4.	. 4. jenis mineral titik	: 4
Data hasil pengukuran	Database mineral	Jenis mineral
2 θ (⁰)	2e (⁰)	
42,02	42,05	cristobalit
60,45	60,49	stishovit
Tabel 4.	. 5. jenis mineral titik	x 5
Data hasil pengukuran	Database mineral	Jenis mineral
2 0 (⁰)	2 0 (⁰)	
21,61	21,60	cristobalit
60,59	60,49	stishovit
i		

Tabel 4. 1. Jenis mineral titik 1

Sampel	Struktur kristal mineral silika	Unit sel
Titik I	Trigonal (heksagonal)	a= 4.7050 A c= 5.2500 A
Titik 2	Trigonal (heksagonal)	a= 4.7050 A c= 5.2500 A
Titik 3	Trigonal (heksagonal)	a= 4.7050 A c= 5.2500 A
Titik 4	Trigonal (heksagonal)	a= 4.7050 A c= 5.2500 A
Titik 5	Trigonal (heksagonal)	a= 4.5350 A c= 5.1700 A

Tabel 4. 6. Struktur Kristal dan Unit sel

2. Hasil Karakterisasi X-Ray Fluoroscence (XRF)

Tabel 4. 7. Komposisi mineral batuan					
Senyawa	SiO ₂	Fe ₂ O ₃	CaO	Al ₂ O ₃	K ₂ O
Titik 1	57,13%	17,97%	13,55%	6,96%	2,28%
Titik 2	56,35%	18,27%	13,63%	6,79%	2,14%
Titik 3	56,30%	17,53%	13,89%	7,98%	2,10%
Titik 4	56,82%	18,15%	13,31%	6,93%	2,59%
Titik 5	56,87%	17,92%	13,59%	6,90%	2,46%
Tak	bel 4.8. ko	mposisi u	nsur miner	al batuan	L
Unsur	Si	Fe	Ca	Al	K
Titik 1	26,71%	12,57%	9,69%	3,69%	1,90%
Titik 2	26,35%	12,78%	9,75%	0,53%	0,12%
Titik 3	26,32%	12,26%	9,93%	4,23%	1,75%
Titik 4	26,56%	12,69%	9,51%	3,67%	2,15%
T'4'1 5					

B. Pembahasan

Penelitian ini telah dilakukan dengan pengambilan sampel pada salah satu daerah di Sulawesi Selatan di kecamatan polongbangkeng Utara kabupaten takalar yang ingin diketahui dari penelitian ini yaitu mineral silika dari sampel batuan tersebut. Sebelum penelitian ini dilakukan telah dilakukan uji pendahuluan yang dimana hasilnya yaitu terdapat mineral silika sebanyak 65,23%. Sampel diambil sebanyak 5 titik menggunakan GPS yang pertama sampel titik 1 atau titik tengah dengan titik koordinat (05°18.635' LS dan 119°32.363' BT), sampel titik 2 yang berada disebelah utara dengan titik koordinat (05°18.629' LS dan 119°32.364' BT), sampel titik 3 disebelah timur dengan titik koordinat (05°18.635' LS dan 119°32.370' BT), sampel titik 4 disebelah barat titik koordinat (05°18.635' LS dan 119°32.377' BT) dan sampel titik 5 berada di sebelah selatan dengan titik koordinat (05°18.642' LS dan 119°32.362' BT) dan dengan kedalaman 50 cm dibawah permukaan tanah. Penelitian ini di uji menggunakan 2 alat yaitu XRD dan XRF

1. Karakterisasi X-Ray Difraction (XRD)

Berdasarkan gambar 4.1 diperoleh hasil karakterisasi xrd masing-masing sampel batuan, mengandung silika yang dimana silika terbentuk dari hasil pelapukan batuan yang mengandung mineral utama, seperti kuarsa dan feldspar, yang berwujud bubuk putih. Silika juga merupakan senyawa yang tidak reaktif dan hanya dapat dilarutkan dalam asam kuat (Hayati Rahma dan Astuti, 2015: 282). Dapat kita lihat grafik di atas bahwa dari kelima sampel tersebut hampir sama yaitu puncak-puncak intensitas yang dihasilkannya yaitu puncak yang tajam yang diberikan tanda merah pada setiap grafik, tanda tersebut menandakan bahwa terdapat mineral silika pada sudut 2 theta [⁰].

Grafik (a) titik 1 mineral silika terdapat pada sudut difraksi 22,01, 27,78, 38,24, 40,88, 42,12, 44,46, 48,12, 52,31, 57,11, 59,78, dan 62,59. Grafik (b) titik 2 mineral silika pada sudut difraksi 22,00, 27,75, 41,06, 42,06, 44,46, 57,07, 59,76, 62,80, 66,36. Grafik (c) titik 3 pada sudut difraksi 21,89, 27,64, 41,97, 44,34, 52,13, 56,96 dan 60,26 menunjukkan mineral silika. Grafik (d) titik 4 menunjukkan mineral silika pada sudut difraksi 21,93, 27,67, 38,11, 40,71, 42,02, 44, 35, 52,18 dan 56,95. Grafik (e) pada sudut difraksi 28,63, 41,83, 46,14, 49,82, 53,19, 53,60, 58,43, 58,89 dan 62,71 menunjukkan mineral silika. Hal ini menandakan bahwa kandungan silika yang terdapat pada sampel titik 1 sampai sampel titik 5 sangat dominan. Meskipun yang terbentuk kebanyakan mineral silika namun terdapat mineral lain. Untuk mengetahui mineral lain selain mineral silika dapat diketahui dari perbandingan data base mineral.

Hasil analisis XRD diperoleh jenis-jenis mineral lain selain mineral silika dapat dilihat pada tabel 4.1, tabel 4.2, tabel 4.3, tabel 4.4 dan tabel 4.5. Jenis mineral utama hasil XRD menghasilkan mineral kuarsa. Jenis mineral yang terkandung pada sampel dapat diketahui dari perbandingan hasil pengukuran dengan data base mineral atau dengan kesesuaian antara data *Software Search Match* yang dimana dari masing-masing sampel memiliki jenis mineral yang hampir sama namun yang di ambil hanya yang mendominasi dan juga yang paling banyak terdapat disetiap sampel. Pada tabel 4.1 jenis mineral titik 1 yaitu kalsium magnesium katena-silika (diopsida) dengan rumus (Ca Mg O6 Si₂), mineral Hedenbergit (Ca0.55 Fe Na0.45 O6 Si₂). Jadeit dengan rumus (Al0.24 Ca0.76 Fe0.76 Na0.24 O6 Si₂) dan mineral Augit (Ca Fe0.25 Mg0.74 O6 Si₂). Tabel 4.2 jenis mineral titik 2 yaitu Diopsida (Ca Mg O6 Si₂), hedenbergit (Ca0.55 Fe Na0.45 O6 Si₂), jadeit (Al0.24 Ca0.76 Fe0.76 Na0.24 O6 Si₂), jadeit (Al0.24 Ca0.76 Fe0.76 Na0.24 O6 Si₂), hedenbergit (Ca0.55 Fe Na0.45 O6 Si₂), jadeit (Al0.24 Ca0.76 Fe0.76 Na0.24 O6 Si₂), jadeit (Al0.24 Ca0.76 Fe0.76 Na0.24 O6 Si₂), hedenbergit (Ca0.55 Fe Na0.45 O6 Si₂), jadeit (Al0.24 Ca0.76 Fe0.76 Na0.24 O6 Si₂), jadeit (Al0.24 Ca0.76 Fe0.76 Na0.24 O6 Si₂), hedenbergit (Ca0.55 Fe Na0.45 O6 Si₂), jadeit (Al0.24 Ca0.76 Fe0.76 Na0.24 O6 Si

Si₂), Augit (Ca Fe0.25 Mg0.74 O6 Si₂) dan Aegirin (Ca0.396 Fe Na0.604 O6 Si₂). Tabel 4.3 jenis mineral titik 3 Diopsida (B0.044 Ca0.784 Mg0.85 Na0.19 O6 Si₁.892 Ti0.254), Hedenbergit (Ca0.6 Fe Na0.4 O6 Si₂), Augit (Ca Fe0.25 Mg0.74 O6 Si₂), Jadeit (Al0.24 Ca0.76 Fe0.76 Na0.24 O6 Si₂) dan Aegirin (Ca0.396 Fe Na0.604 O6 Si₂). Tabel 4.4 jenis mineral titik 4 yaitu cristobalit dengan rumus (O2 Si) dan stishovit (O2 Si) dan tabel 4.5 jenis mineral titik 5 sama dengan titik 4 yaitu cristobalit dan stishovit. Selain itu uji XRD dapat pula diketahui struktur kristal.

Berdasarkan tabel 4.6 hasil karakterisasi XRD dapat diketahui struktur kristal mineral silika dan juga unit selnya yaitu dari kelima sampel struktur kristalnya sama yaitu trigonal atau heksagonal dengan unit sel yang juga hampir sama. Trigonal memiliki rasio perbandingan sumbu a = b \neq c, yang artinya Panjang sumbu a dan b sama, tapi tidak sama dengan sumbu c dan juga memiliki sudut kristalografi $\alpha = \beta = \gamma$ $\neq 90^{\circ} > 120^{\circ}$. Hal ini berarti bahwa, sudut α dan β saling tegak lurus dan membentuk sudut 120° terhadap sumbu γ (Hidayati, 1995: 8). Pada system kristal ini, sesuai dengan namanya heksagonal (heksa = enam), maka system ini memiliki 6 sisi yang sama. System kristal ini memiliki dua nilai sudut yaitu 90° dan 120° ($\alpha = \beta = 90^{\circ}$ dan $\gamma > 120^{\circ}$), sedangkan panjang rusuk-rusuknya adalah a = b \neq c, semua atom yang berada pada sudut-sudut (pojok) heksagonal dan terdapat masing-masing atom berpusat muka pada dua sisi heksagonal (yang ditunjukkan atom dengan warna hijau)

Gambar 4.2. Struktur Kristal Heksagonal

2. Karakterisasi X-Ray Fluorocence (XRF)

Untuk pengujian dengan menggunakan XRF diketahui komposisi kimia dari batuan. Komposisi kimia yang mendominasi dari ke lima sampel tersebut yaitu silika (SiO₂) dapat dilihat pada tabel 4. 7. Pada penelitian ini kandungan silika dari titik 1 sampai titik lima yaitu 57,13%-56,30%. Kandungan mineral silika atau senyawa oksida tertinggi pada titik 1 yaitu 57,13%. Sehingga dari kelima sampel tersebut sampel titik 1 memiliki persentase tertinggi dibandingkan dengan titik 2, titik 3, titik 4 dan titik 5. Titik 5 memiliki persentase kedua tertinggi setelah titik 1 yang kemudian diikuti sampel titik 4 dan sampel titik 2 dan sampel terakhir tertinggi yaitu berada pada titik 3. . Selain mineral silika (SiO₂) ada beberapa senyawa lain yang terkandung dalam sampel titik 1 sampai titik 5 yaitu Besi (III) Oksida (Fe₂O₃) dengan persentase tertinggi pada sampel titik 3 yaitu 13,89%, Aluminium Oksida (Al₂O₃) sebanyak 7,98% pada sampel titik 3, Kalium Oksida (K₂O) tertinggi pada sampel titik 4 sebanyak 2,59%.

Sedangkan pada unsur silikon (Si) tertinggi yaitu 26,71% pada titik 1 dapat dilihat pada tabel 4.8 dengan unsur lain yang terdapat pada sampel yaitu Besi (Fe) 12,78% tertinggi pada sampel titik 2, Kalsium (Ca) sebesar 9,93% pada titik 3, Aluminium (Al) pada sampel titik 3 sebesar 4,23% dan Kalium (K) tertinggi sebesar 2,15% pada sampel titik 4. Namun demikian keberadaan senyawa silika dan juga unsur Si yang lebih tinggi dan dominan.

Perbedaan utama antara silikon dan silika adalah bahwa silikon adalah unsur kimia sedangkan silika adalah senyawa kimia. Silika dan silikon memiliki struktur kisi. Tetapi silika berbeda dari silikon karena adanya ikatan kovalen silikon-oksigen. Di alam silikon tidak ditemukan dalam bentuk elemen bebas, melainkan berikatan dengan oksigen dan elemen lain. Silikon banyak ditemukan dalam bentuk (SiO₂) nomor atom silikon adalah 14 dengan konfigurasi elektron Si 2,8,4. Tingkat oksidasi tertinggi unsur silikon adalah +4.

Dalam silika, atom silikon dan oksigen bergabung satu sama lain dengan ikatan kovalen untuk membentuk struktur kristal besar. Hal ini yang membedakan hasil analisis atau konsentrasi senyawa SiO₂ dan Si karena pada SiO₂ terikat dengan silikon oksida (SiO₂) sehingga pada senyawa SiO₂ memiliki persentase lebih tinggi dibandingkan unsur Si. Ikatan dalam oksida SiO₂ merupakan senyawa yang terbentuk dengan adanya pasangan yang dibentuk oleh 1 atom Si dengan atom O. Si atom logam dari golongan IV A dengan elektron valensi 4 dan O atom non logam dari golongan VI A, dengan elektron valensi 6 sehingga total 8 elektron pada setiap atom Si (Lestari dan Setyo, 2015: 131).

Komposisi kimia yang mendominasi dari ke lima sampel tersebut yaitu silika (SiO₂) dapat dilihat pada tabel 4. 7 dan tabel 4. 8 sehingga batuan ini digolongkan ke dalam batuan beku andesit dan diorit. Berdasarkan penelitian Peccerillo dan Taylor (1976) dalam jurnal (Andreas Alexandros dan Ardian Putra, 2018: 295), mengelompokkan magma berdasarkan komposisi silika penyusun batuannya. Terbentuk dari magma dengan komposisi andesit yang konsentrasi silikanya antara 57%-63%. Berdasarkan pengelompokan tersebut yang dimana kandungan silika tertinggi pada titik 1 sebesar 57,13% dan kandungan silika terendah pada titik 3 sebesar 56,30%. Pada penelitian ini kandungan silika dari titik 1 sampai titik lima yaitu 57,13%-56,30%.

BAB V

PENUTUP

A. Kesimpulan

Kesimpulan pada penelitian ini yaitu karakterisasi XRD dari grafik sampel titik 1 sampai sampel titik 5 mineral silika yang paling banyak ditemukan di setiap sampel dan kristal yang terbentuk dari kelima sampel di atas yaitu kristal trigonal (heksagonal akses) dan menghasilkan jenis-jenis mineral yang terkandung dalam sampel selain mineral silika yaitu kalsium magnesium katena-silika (diopsida), hedenbergit, jadeit, augit, aegirin, kristobalit dan stishovit. Karakterisasi XRF menghasilkan komposisi kimia dari ke lima sampel yang mendominasi adalah mineral silika dari titik 1 sebesar 57,13%, titik 2 sebesar 56,36%, titik 3 sebesar 56,30%, titik 4 sebesar 56,82% dan titik 5 sebesar 56,87%. Selain mineral silika (SiO₂) ada beberapa senyawa lain yang terkandung dalam sampel titik 1-titik 5 yaitu Besi (III) Oksida (Fe₂O₃), Kalsium Oksida (CaO), Aluminium Oksida (Al₂O₃), Kalium Oksida (K₂O). Sedangkan pada unsur silikon (Si) tertinggi yaitu 26,71% pada titik 1, dan selain unsur silika terdapat unsur lain yaitu Besi (Fe), Kalsium (Ca), Aluminium (Al) dan Kalium (K)

B. Saran

Saran yang dapat diberikan pada penelitian ini, yaitu perlu dilakukan penelitian lebih lanjut dengan melakukan pemurnian sampel.

DAFTAR PUSTAKA

Al-Qur'an Al-Karim.

- Alimin, Maryono dan Suriati E.P. "Analisis Kandungan Mineral Pasir Pantai Losari Kota Makassar Menggunakan XRF dan XRD" *Chemica* 12, no. 2 (2016): h. 19-23.
- Andreas, Alexandros dan Ardian Putra. "Perbandingan Karakterisasi Batuan beku Erupsi Gunung Gamalama dan Gunung Talang" *Fisika Unand* 7, no. 4 (2018): h. 293-298.
- Baqiyah, M.A, Iqbal L, Muhammad N dan Darminto. "Structural and Morphological Studies of Lava Rock from Mount Gamalama Ternate for Possible Functional Materials Applications" *Fisika dan Aplikasinya* 13, no. 1 (2017): h. 2729.
- Djuhaepa, A.P, Moh D.T.M dan Sandra. "Identifikasi Sebaran Biji Besi dengan Menggunakan Metode Geolistrik Hambatan Jenis di Desa Ogowele Kabupaten Tolitoli" *Gravitasi* 14, no. 2 (2015): h. 1-6.
- Dyana, R.G.L dan Triwikantoro. "Sintesis dan Karakterisasi Komposit PANi-SiO₂ dengan Pengisi Gel SiO₂ dari Pasir Bancar Tuban" *Sains dan Seni ITS* 6, no. 1 (2017): h. 14-19.
- Fachry A.R, Juliyadi Tumanggor dan Ni Putu E.Y.L. "Pengaruh waktu Kristalisasi dengan Proses Pendinginan terhadap Pertumbuhan Kristal Amonium Sulfat dari Larutannya" *Teknik Kimia* 15, no. 2 (2008): h. 9-16.
- Fiqry Rizatul, Ariswan dan Heru Kuswanto. "Struktur Kristal dan Komposisi Kimia Semikonduktor CD (SE0,6TE0,4) Hasil Preparasi dengan Metode Bridgman" *Fisika dan Aplikasinya* 2, no. 1 (2017): h. 75-82.
- Hadi, S, Munasir, dan Triwikantoro. "Sintesis Silika Berbasis Pasir Alam Bancar Menggunakan Metode Kopresipitasi, Jurnal Fisika dan Aplikasinya" Fisika ITS 7, No. 2 (2011): h. 1-4.
- Hardyanti, I. S, Isni Nurani, Dyan S. H. HP, Evalisa A, Emas A. P. W. "Pemanfaatan Silika (SiO2) dan Bentonit sebagai Adsorben Logam Berat Fe pada Limbah Batik" *Sains Terapan* 3 NO. 2 (2017): h. 37-41.
- Hidayati. "Penentuan Struktur Oksida Uranium". PPNY-BATAN Yogyakarta, (1995):h.8
- Jalil, Zulkarnain, Karmila Sari, dan Rini Safitri. "Minerals Composition In Rocks From Gold Mining Areas At Gunong Ujeun, Krueng Sabee, Aceh Jaya" Natural 13, no. 1 (2013): h. 15-18.
- Jamaluddin dan Emi Prasetyawati Umar. "Identifikasi Kandungan Unsur Logam Batuan Menggunakan Metode XRF (*X-Ray Fluorescence*) (Studi kasus: Kabupaten Buton)" *Geocelebes* 2, no. 2 (2018): h. 47-52.

Kementrian Agama RI, Al-Qur'an dan Terjemahnya, 2013.

- Kusumwati, A.D. Markus, D dan Yudyanto. "Characterizations of Pyrite and Chalcopyrite for Discover Element Composition, Crystal Phase and Dielectric Konstan" Geosains 11, no. 1 (2018): h. 13-18.
- Lamburu, A.A, Ildrem Syafri dan Euis, T,Y. "Karakteristik Mineralogi Endapan Pasir Besi di Daerah Galela Utara Kabupaten Halmahera Utara Provinsi Maluku Utara" *Bulletin of Scientific Contribution* 15, no. 2 (2017): h. 151-160.
- Lestari, Diyah Erlina dan Setyo Budi Utomo. "Kajian Awal Perilaku Silika Dalam Air Pendingin Primer Reaktor RSG-GAS" *PRSG* 1, no. 1 (2015): 130-139.
- Maradelta, Daris, Hamdi Rifai, dan Ahmad Fauzi. "Karakterisasi Jenis Mineral Magnetik Sedimen Gua di Gua Liang Luar Kabupaten Manggarai Barat Provinsi Nusa Tenggara Timur Menggunakan Metode *X-Ray Diffraction* (XRD)" *Pillar Of Physics* 7, no.1 (2016): h. 49-56.
- Metungku, N.A. Darmamawati, D dan Elisa Sesa. "Pemurnian dan Karakterisasi Senyawa SiO₂ Berbasis Pasir Kuarsa dari Desa Pendolo Kecamatan Pamona Selatan Kabupaten Poso" *gravitasi* 16, no. 1 (2017): h. 39-43.
- Muljadi, Prijo sardjono dan Perdamean Sebayang. "Analisis Struktur Kristal dan Sifat Magnet SrO₆Fe₂O₃ yang Dihasilkan Via Solid-Solid Mixing dan Sintering" *Fisika Indonesia* 17, no. 49 (2013): h. 42-45.
- Munasir, Triwikantoro, M. Zainuri dan Darminto. "Uji XRD dan XRF pada Bahan Mineral (Batuan dan Pasir) sebagai Sumber Material Cerdas (CaCO₃ dan SiO₂)" *Penelitian Fisika dan Aplikasinya* 2, no. 1 (2012): 20-29.
- Putri, S.A. Ardian P, dan Mirzam A. "Studi Petrografi Batuan Beku dan Sinter Silika di Kecamatan Alam Pauh Duo, Kabupaten Solok Selatan" *Fisika Unand* 7, no. 4 (2018): h. 320-327.
- Safitri, B.R.A dan Muh A.A. "Menentukan Jumlah Kandungan Unsur Mineral Logam Kalium (K) dalam Batuan Tambang Di Desa Bangkang Kecamatan Praya Barat Daya Kabupaten Lombok Tengah dengan Metode AAS" *Kpendidikan Fisika "Lensa"* 6, no. 1 (2018): h. 50-52.
- Sari, Rindang Kembar. "Potensi Mineral Batuan Tambang Bukit 12 dengan Metode XRD, XRF dan AAS" *EKSAKTA* 2, no. 2 (2016): h. 13-23.
- Setiady, D dan A. Sianipar. "Jenis dan Kandungan Mineral dalam Sedimen Lepas Pantai di Perairan Kabupaten Aceh Utara Provinsi Nangroe Aceh Darussalam" *Geologi Kelautan* 7, no. 3 (2009): h. 151-161.
- Sijaru, A. Johanes H. Emy S. dan Agus D.H. "Analisis Kandungan Mineral dan Logam Oksida pada Singkapan Batuan Vulkanik yang Termanivestasi Alterasi Hidrothermal Wilayah Pertambangan PT. Batutua Tembagaraya Pulau Wetar Provinsi Maluku" *Geology* 16, no. 3 (2018): h. 149-162.
- Sunarwan, Bambang. "Pemetaan Tinjau Daerah Alterasi pada Sistem Vein-Epithermal Studi Kasus Daerah Sengon dan Sekitarnya, Kec. Tugu, Kab. Trenggalek-Jawa Timur" *Teknologi* 1, no. 17 (2010): h. 23-35.
- Shihab, M Quraish. Tafsir Al Misbah Pesan Kesan dan Keserasian Al-Qur'an. Jakarta: Lentera Hati, 2009

- Smallman dan Bishop. Metalurgi Fisik Modern dan Rekayasa Material. Jakarta: Erlangga, 2000.
- Smith Deane K. "Opal, cristobalite, and tridymite: Noncrystallinity versus crystallinity, nomenclature of the silica minerals and bibliography" *Powder Diffr* 13, no. 1 (1998): h. 2-19.
- Zawrah, M.F, EL-Kheshen. "Facile And Economic Synthesis of Silica Nanoparticles" Ovonic Research, Vol. 5 (2009): hal. 129-133.

LAMPIRAN

Lampiran I : Skema Kerja Penelitian

Lampiran II : Skema Kerja

1. Pengambilan Sampel

Serbuk

3. Karakterisasi

a. X-Ray Diffraction (XRD)

Lampiran III: Hasil analisis XRD dan XRF

- 1. Hasil analisis XRD
 - a. Sampel titik 1

Match! Phase Analysis Report

Sample: MINERAL SILIKA T1_exported

silicate (Diopside)	0. M. 0.70 N/0.00 00 0/0	00 000 4007	0.0000
Diopside	Ca Mg0.78 NI0.22 O6 Si2 B0.022 Ca0.82 Mg0.846 Na0.168 O6 Si1.882 Ti0.272	96-900-1307 96-900-5679	0.8686 0.8684
Hedenbergite	Ca0.55 Fe Na0.45 O6 Si2	96-901-0082	0.8654
Hedenbergite	Ca0 503 Fe Na0 497 O6 Si2	96-900-9665	0.8643
Diopside	Al0.078 Ca Fe0.01 Mg0.99 O6 Si1.922	96-900-4319	0.8611
Diopside	Ca Mg O6 Si2	96-100-0008	0.8595
Diopside	Al0.078 Ca Fe0.038 Mg0.962 O6 Si1.922	96-900-4322	0.8591
Diopside	Al0.06 Ca0.91 Fe0.1 Mg0.91 Na0.05 O6 Si1.97	96-900-1333	0.8589
Hedenbergite	Can 501 Ee Na0 499 06 Si2	90-900-4320	0.0009
Hedenbergite	Al0.24 Ca0.76 Fe0.76 Na0.24 O6 Si2	96-901-0329	0.8587
Diopside	Al0.078 Ca Fe0.008 Mg0.992 O6 Si1.922	96-900-4313	0.8585
Jadeite	Al0.24 Ca0.76 Fe0.76 Na0.24 O6 Si2	96-901-0474	0.8585
Diopside	Al0.068 Ca Fe0.008 Mg0.992 O6 Si1.932	96-900-4312	0.8581
Diopside	Na0 022 O6 Si1 934 Ti0 001	90-900-0150	0.0577
Diopside	Ca Mg O6 Si2	96-900-1308	0.8574
Diopside	Al0.078 Ca Fe0.024 Mg0.976 O6 Si1.922	96-900-4318	0.8574
Ca.89 Mg1.11 Si1.98 O6	Ca0.89 Mg1.11 O6 Si1.98	96-152-8386	0.8569
Diopside	AIU.078 Ca FeU.016 Mg0.984 Ob SI1.922	96-900-4314	0.8568
Diopside	Ca Fe0 13 Mg0 943 O6 Si1 927	96-900-5335	0.8565
Diopside	Al0.254 Ca0.751 Cr0.007 Fe0.244 Mg0.77 Mn0.003	96-900-5007	0.8563
	Na0.092 O6 Si1.848 Ti0.031		
Diopside	Ca0.89 Mg1.11 O6 Si2	96-900-4210	0.8561
Diopside	Alu. 16 Cau.96 Feu.05 Hu.06 Mgu.86 Nau.04 O6	96-900-4602	0.8557
Diopside	Ca Mg O6 Si2	96-900-4554	0.8550
Diopside	Al0.189 Ca0.72 Cr0.04 Fe0.111 Mg1.03 Mn0.003	96-900-6149	0.8544
B	Na0.027 O6 Si1.891 Ti0.003	~~ ~~ ~~ ~~ ~	0 0 5 4 0
Diopside	CaU.8 Mg1.2 O6 Si2	96-900-4954	0.8542
Diopside	Alo 29 Ca0 45 Mg0 91 O6 Si1 85	96-900-4321	0.0041
Diopside	Al0.332 Ca0.691 Cr0.003 Fe0.244 Mg0.742 Mn0.00	18	0.8538
	Na0.128 O6 Si1.816 Ti0.036	96-	
Diopside	Alo 2 Cao 691 Cr0 001 Fe0 202 Mg0 812 Mg0 006		0 8536
	Na0.159 O6 Si1.918 Ti0.011	96-	
	900-5006		
Diopside	AI0.078 Ca Fe0.03 Mg0.97 O6 Si1.922	96-	0.8530
Dianaida	900-4313	06	0.0504
Diopside	Q00.5334	90-	0.0524
Diopside	Ca Mg0 26 Ni0 74 O6 Si2	96-900-	0 8518
p	1305		0.0010
Diopside	Ca Mg0.55 Ni0.45 O6	96-900-	0.8517
Dionsido	1306 Co Mg O6 Si2	06 000	0.9516
Diopside	0798	30-300-	0.0010
Diopside	Al0.29 Ca0.9 Mg0.96 O6 Si1.85	96-900-	0.8509
B	5184		
Diopside	AIU.303 CaU.705 Cr0.001 Fe0.24 Mg0.684 Mn0.004	06 000	0.8506
	5002	90-900-	
Diopside	B0.028 Ca0.872 Mg0.906 Na0.118 O6 Si1.94 Ti0.13	38 96-900-	0.8506
	5680	~~~~~	
Diopside		96-900-	0.8499
Diopside	Al0.301 Ca0.708 Cr0.001 Fe0.235 Mq0.696 Mn0.00	2	0.8499
1	Na0.173 O6 Si1.847 Ti0.037	96-900-	
Dionside	5004 Alo 328 Ca0 687 Cr0 006 Ee0 233 Mg0 692 Mp0 00	6	0 8498
Diopolde	Na0.158 O6 Si1.846 Ti0.044	96-900-	0.0400
Dianaida	5003		0 0 4 0 4
Diopside	Na0.187 O6 Si1.846 Ti0.04	96-900-	0.0494
Disside	5005		0.0400
Diopside	AlU.029 Ca0.798 Cr0.071 Fe0.059 K0.073 Mg0.955 Na0 023 O6 Si1 992		0.8489
	96-900-1741		
Diopside	Ca0.87 Mg0.94 Mn0.19 O6 Si2	96-	0.8484
Ca.818 Mg.792 Fe.183 Fe.086	Ca0.818 Fe0.269 Mg0.792 O6 Si1.731	96-152-	

Al.151 Al.269 Si1.731 O6 Diopside Diopside

6738 Al0.078 Ca Fe0.018 Mg0.982 O6 Si1.922 900-4316	96-	0.8482
ĂlÕ.078 Ča Fe0.052 Mg0.948 O6 Si1.922 900-4317	96-	0.8480

and 153 others...

Search-Match

Settings

Reference	
database used	COD-Inorg REV173445 2016.01.04
Automatic	
zeropoint	
adaptation	Yes
Minimum figure-of-merit (FoM) theta window forpeak corr. Minimum rel. int. forpeak corr. Parameter/influence 2theta Parameter/influence intensities Parameter multiple/single phas	0.60 0.30 deg. 1 0.50 0.50 se(s) 0.50
Peak List	

Peak List

No.	2theta [°]	d [Å]	1/10	FWHM	Matche
	40.70	0 4000	05 50		d
1	10.78	8.1998	95.58	0.2020	
2	11.25	7.8590	89.29	0.2020	
3	11.57	7.6428	82.34	0.2020	
4	11.93	7.4109	66.76	0.2020	
5	13.75	6.4371	81.92	0.2020	
6	15.30	5.7868	35.30	0.2020	
/	18.36	4.8296	40.41	0.2020	
8	19.43	4.5650	64.64	0.2020	
9	20.00	4.4363	90.61	0.2020	
10	20.38	4.3540	43.71	0.2020	
11	20.75	4.2765	36.82	0.2020	
12	21.02	4.2235	38.48	0.2020	
13	21.49	4.1324	109.77	0.2020	
14	22.01	4.0361	114.23	0.2020	A
15	22.83	3.8915	81.17	0.2020	
16	23.72	3.7482	303.68	0.2020	
17	24.57	3.6207	136.32	0.2020	
18	25.87	3.4411	86.11	0.2020	
19	20.50	3.3537	50.83	0.2020	
20	27.39	3.2539	53.07	0.2020	•
21	27.78	3.2084	1000.00	0.2020	A
22	28.49	3.1301	98.64	0.2020	
23	29.53	3.0221	49.83	0.2020	
24	29.93	2.9826	525.01	0.2020	
25	30.36	2.9413	376.48	0.2020	
20	30.69	2.0927	240.10	0.2020	
21	31.57	2.0313	00.97	0.2020	
28	33.83	2.6473	44.25	0.2020	
29	35.07	2.0004	200.95	0.2020	
30	30.00	2.0107	390.00	0.2020	
20	30.49	2.4002	02.05	0.2020	
ు∠ 22	37.20	2.4149	40.24	0.2020	
33	31.15	2.3010	30.57	0.2020	

34 35 36	38.24 39.19 40.73	2.3517 2.2970 2.2137	34.73 64.55 41.36	0.2020 0.2020 0.2020	A
37 38	40.88 41.13	2.2055 2.1927	39.55 35.08	0.2020	A
39	41.71	2.1637	86.88	0.2020	
40 41	42.12 42.31	2.1437 2.1344	206.92 199.86	0.2020	A
	42.01	2.1044	100.00	0.2020	
42 43	42.95	2.1041	107.64	0.2020	
44	44.46	2.0362	93.76	0.2020	A
45	44.84	2.0199	79.44	0.2020	
46 47	45.28	2.0013	51.16 47.23	0.2020	
48	45.55	1.9668	63.24	0.2020	
49	46.50	1.9513	38.44	0.2020	
50	46.63	1.9461	47.03	0.2020	
51 52	47.15 47.32	1.9261	55.77 36.17	0.2020	
53	48.12	1.8894	41.06	0.2020	А
54	48.32	1.8820	57.90	0.2020	
55 56	49.14	1.8525	47.85	0.2020	
50 57	49.71 50.31	1.8120	44.61	0.2020	
58	50.81	1.7955	84.69	0.2020	
59	51.61	1.7696	75.67	0.2020	
60 61	52.31 52.85	1.7475	148.43	0.2020	A
62	53.14	1.7220	52.50	0.2020	
63	53.34	1.7160	54.21	0.2020	
64 65	53.55	1.7099	51.88 36.60	0.2020	
66	54.78	1.6743	40.34	0.2020	
67	54.94	1.6698	45.25	0.2020	
68	55.14	1.664	39.25	0.2020	
69 70	55.34 56.67	1.658 7 1.622	35.03 168 31	0.2020	
74	57.44	9	404.07	0.2020	ISLAM NEGERI
71	57.11	4	134.07	0.2020	
72	58.26	1.582 3	45.65	0.2020	
73	59.25	1.558	57.41	0.2020	
74	59.78	1.545	83.89	0.2020	88 A R
75	60.28	1.534	45.68	0.2020	
76	60.39	1.531	48.57	0.2020	
77	60.85	1.521	62.00	0.2020	
78	61.28	1.511	45.66	0.2020	
79	61.62	1.503	47.29	0.2020	
80	62.15	0 1.492	83.30	0.2020	
81	62.59	1.482	133.34	0.2020	A
82	65.74	1.419	118.67	0.2020	
83	66.32	4 1.408 3	55.75	0.2020	

Rietveld Refinement using FullProf

Calculation was not run or did not converge.

Integrated Profile Areas

Peak Residuals

Based on calculated profile

Profile area	Counts	Amount
Overall diffraction profile	8748	100.00%
Background radiation	7214	82.47%
Diffraction peaks	1534	17.53%
Peak area belonging to selected phases	209	2.39%
Peak area of phase A (Quartz)	209	2.39%
Unidentified peak area	1383	15.80%

Peak data Overall peak intensity Peak intensity belonging to selected	Counts 47 9	<i>Amount</i> 100.00% 18.90%
Unidentified peak intensity	38	81.10%

Diffraction Pattern Graphics

Coupled TwoTheta/Theta 03:27:09 SSD160 (1D mode): PSD counter

375 D2-212186 3/2/2020 3:49:59 AM Commande r Sample ID 351

a. sampel titik 2

Match! Phase Analysis Report

Ca Mg O6 Si2

Calcium magnesium catena-

901-00850.8375901-04740.835396-101-0.8344

FoM

0.8464

0.8382

0.8377 0.8375

silicate (Diopside)		1048		
Diopside	Ca Mg0.26 Ni0.74 O6 Si2	96-900-1305	0.8303	
Diopside	Ca Mg0.78 Ni0.22 O6 Si2	96-900-1307	0.8290	
Diopside	Al0.29 Ca0.45 Mg0.91 O6 Si1.85	96-900-5183	0.8270	
Diopside	Al0.209 Ca0.896 K0.072 Mg0.887 O6 Si1.936	96-900-5561	0.8254	
Diopside	Al0.16 Ca0.96 Fe0.05 H0.06 Mg0.86 Na0.04 O6 Si1.9 Ti0.02	96-900-4602	0.8246	
Diopside	Al0.06 Ca0.91 Fe0.1 Mg0.91 Na0.05 O6 Si1.97	96-900-1333	0.8242	
Diopside	Al0.189 Ca0.72 Cr0.04 Fe0.111 Mg1.03 Mn0.003 Na0.027 O6 Si1.891 Ti0.00 6149	03 96-900-	0.8236	
Diopside	Ca0.94 Fe0.036 Mg0.964 Na0.06 O6 Si2	96-900-9602	0.8230	
Diopside	Ca Mg O6 Si2	96-900-4554	0.8207	
Hedenbergite	Ca0.55 Fe Na0.45 O6 Si2	96-901-0082	0.8197	
Diopside	Al0.1 Ca0.78 Cr0.09 Fe0.05 Mg0.83 Na0.18 O6 Si1.97	96-900-1334	0.8188	
Diopside	Al0.078 Ca Fe0.016 Mg0.984 O6 Si1.922	96-900-4314	0.8184	
Antigorite	H62 Mg48 O147 Si34	96-900-4515	0.8184	
Diopside	Al0.078 Ca Fe0.002 Mg0.998 O6 Si1.922	96-900-4321	0.8180	
Diopside	Al0.078 Ca Fe0.01 Mg0.99 O6 Si1.922	96-900-4319	0.8177	
Diopside	Cau.8 Mg1.2 O6 Si2	96-900-4954	0.8172	
D:		96-900-1052	0.8170	
Diopside	BU.028 Ca0.872 Mg0.906 Na0.118 O6 Si1.94 Ti0.138	96-900-5680	0.8170	
Diopside	Alu.078 Ca Fe0.024 Mg0.976 06 S11.922	96-900-4318	0.8169	
	AIU.078 Ca FeU.03 Mg0.97 C6 SI1.922	90-900-4313	0.0100	
Dianaida	Ca Ni OG Si2	90-102-0000	0.0101	
		90-900-1304	0.0101	
Dionside	Alo 100 Cao 737 Cro 04 Eeo 116 Mat 052 Map 003 Nao 022 O6 Sit 034	Tin 001 06-000-	0.8158	
Diopside	Ald. 103 Cad. 737 Cld. 04 1 60. 110 Mg 1.032 Millo.003 Na0.022 CO SI 1.334	6150	0.0150	
Diopside	Al0.2 Ca0.691 Cr0.001 Fe0.202 Mg0.812 Mn0.006 Na0.159 O6 Si1.918	Ti0.011 96-900- 5006	0.8156	
Diopside	Al0.078 Ca Fe0.018 Mq0. <mark>982 O6 Si</mark> 1.922	96-900-4316	0.8154	
Diopside	Al0.078 Ca Fe0.052 Mg0. <mark>948 O6 Si</mark> 1.922	96-900-4317	0.8151	
Diopside	B0.022 Ca0.82 Mg0.846 Na0.168 O6 Si1.882 Ti0.272	96-900-5679	0.8149	
Diopside	Ca Mg O6 Si2	96-900-0332	0.8148	
Diopside	Al0.078 Ca Fe0.038 Mg0.962 O6 Si1.922	96-900-4322	0.8148	
Diopside	Al0.078 Ca Fe0.008 Mg0.992 O6 Si1.922	96-900-4313	0.8147	
Diopside	Al0.078 Ca Fe0.008 Mg0.992 O6 Si1.922	96-900-4320	0.8147	
Diopside	Ca Mg O6 Si2	96-100-0009	0.8144	
Diopside	Ca Mg0.55 Ni0.45 O6 Si2	96-900-1306	0.8139	
Diopside	Al0.068 Ca Fe0.008 Mg0.992 O6 Si1.932	96-900-4312	0.8139	
Diopside	Al0.332 Ca0.691 Cr0.003 Fe0.244 Mg0.742 Mn0.008 Na0.128 O6 Si1.816 Ti0.036		0.8134	
		96-900-5008		
Diopside	Al0.19 Ca0.88 K0.12 Mg0.83 O6 Si1.98	96-900-4024	0.8126	
Diopside	Al0.19 Ca0.88 K0.12 Mg0.83 O6 Si1.98	96-900-4023	0.8122	
Diopside	Alu.268 Cau.673 Cru.002 Feu.335 Mgu.685 Mnu.007 Nau.116 O6 Si1.895	96-900-5011	0.8120	
Clinopyroxene	Ca0 5 Fe Na0 5 O6 Si2	96-900-5435	0 8119	
Hedenbergite	Ca0 506 Fe Na0 494 O6 Si2	96-901-0083	0.8119	
Dionside	Ca Mg O6 Si2	96-900-0798	0.8115	
Aegirine	Ca0 488 Fe Na0 512 O6 Si2	96-901-0084	0.0110	0 8113
Diopside	Ca0 87 Mg0 94 Mg0 19 O6 Si2	96-900-0792		0.8108
(Mn0.96 Mg1.04) (Si2.06)	Mg1 04 Mg0 96 06 Si2	96-152-4436 0	8107	2.0.00
and 152 others		00 10E 1100 0		

Search-Match

Settings

Reference database used	COD-Inorg REV173445 2016.01.04
Automatic zeropoint adaptation	Yes
Minimum figure-of-merit (FoM)	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel. int. for peak corr.	1
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Selection Criteria

Elements:

Elements that must be present: O, Si

48

No.	2theta [°]	d [Å]	1/10	FWHM	Matched	
1	11.02	8.0203	55.05	0.2020		
2	11.17	7.9114	61.14	0.2020		
3	11.67	7.5777	63.24	0.2020		
4	12.13	7.2910	58.65	0.2020		
5	12.36	7.1545	44.96	0.2020		
6	13.72	6.4513	94.85	0.2020		
7	15.15	5.8437	33.96	0.2020		
8	15.28	5.7950	32.97	0.2020		
9	18.94	4.6811	51.67	0.2020		
10	19.51	4.5474	44.00	0.2020		
11	20.00	4.4370	94.05	0.2020		
12	20.37	4.3553	33.71	0.2020		
13	20.81	4.2646	36.04	0.2020		
14	21.44	4.1405	105.08	0.2020		
15	22.00	4.0378	134.34	0.2020	А	
16	22.40	3.9665	34.61	0.2020		
17	22.80	3.8978	119.35	0.2020		
18	23.19	3.8328	38.40	0.2020		
19	23.68	3.7539	312.56	0.2020		
20	24.08	3.6927	36.53	0.2020		
21	24.55	3.6226	151.70	0.2020		
22	25.37	3.5084	43.82	0.2020		
23	25.82	3.4480	96.67	0.2020		
24	26.54	3.3553	71.19	0.2020		
25	27.75	3.2127	1000.00	0.2020	А	
26	28.46	3.1336	88.68	0.2020		
27	29.47	3.0286	87.68	0.2020		
28	29.79	2.9965	75.21	0.2020		
29	29.88	2.9881	391.06	0.2020		
30	30.25	2.9525	103.48	0.2020		
31	30.35	2.9423	485.20	0.2020		
32	30.86	2.8948	220.89	0.2020		
33	31.54	2.8343	43.68	0.2020		
34	31.71	2.8199	40.91	0.2020		
35	33.75	2.6539	45.45	0.2020		
36	35.01	2.5611	179.07	0.2020		
37	35.00	2.5160	452.31	0.2020		
38	30.30	2.4687	37.01	0.2020		
39	30.57	2.4000	35.20	0.2020		
40	37.23	2.4155	42.51	0.2020		
41	30.20	2.3020	71.68	0.2020		
42	39.20	2.2303	59.43	0.2020		
43	30.04	2.2774	47.20	0.2020		
44	40.62	2.2303	41.25	0.2020		
46	41.06	2 1965	35.82	0.2020	Δ	
40	41.65	2.1669	64 48	0.2020	~	
48	42.06	2.1005	186 32	0.2020	Δ	
49	42.36	2 1318	207.87	0.2020	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
50	43.25	2 0902	37.68	0.2020		
51	43.68	2.0708	32.21	0.2020		
52	44.46	2.0361	142.60	0.2020	А	
53	44.81	2.0208	70.11	0.2020		
54	45.18	2.0055	61.85	0.2020		
55	45.64	1.9863	38.04	0.2020		
56	46.03	1.9704	62.97	0.2020		
57	46.58	1.9484	46.49	0.2020		
58	46.91	1.9352	36.16	0.2020		
59	47.08	1.9285	45.02	0.2020		
60	48.29	1.8831	56.34	0.2020		

Elements that may be present:

All elements not mentioned above

Peak List

61	49.66	1.8342	93.38	0.2020
62	50.17	1.8170	31.93	0.2020
63	50.42	1.8084	38.13	0.2020
64	50.90	1.7926	67.32	0.2020
65	51.53	1.7722	57.22	0.2020
66	52.92	1.7289	31.37	0.2020
67	53.35	1.7159	38.74	0.2020
68	54.92	1.6705	36.32	0.2020
69	56.59	1.6252	206.71	0.2020
70	57.07	1.6126	132.52	0.2020
71	58.75	1.5702	31.46	0.2020
72	59.06	1.5630	35.82	0.2020
73	59.23	1.5587	41.91	0.2020
74	59.76	1.5461	86.08	0.2020
75	60.37	1.5320	47.97	0.2020
76	60.80	1.5223	61.25	0.2020
77	61.21	1.5131	39.84	0.2020
78	61.59	1.5045	71.51	0.2020
79	62.11	1.4932	62.49	0.2020
80	62.34	1.4883	77.23	0.2020
81	62.55	1.4838	75.53	0.2020
82	62.80	1.4785	58.81	0.2020
83	64.17	1.4503	38.28	0.2020
84	65.42	1.4255	36.66	0.2020
85	65.74	1.4193	130.94	0.2020
86	66.36	1.4076	110.17	0.2020
87	67.24	1.3912	38.49	0.2020

Rietveld Refinement using FullProf

Calculation was not run or did not converge.

		Integrated Profile Areas
Based on calculated profile		
Profile area	Counts	Amount
Overall diffraction profile	9476	100.00%
Background radiation	7779	82.08%
Diffraction peaks	1698	17.92%
Peak area belonging to selected phases	244	2.57%
Peak area of phase A (Quartz)	244	2.57%
Unidentified peak area	1516	16.00%
		Peak Residuals
Peak data Max K Overall peak intensity Peak intensity belonging to selected phases Unidentified peak intensity	Counts 54 9 45	Amount 100.00% 17.28% 82.72%

А

А

А

А

50

Diffraction Pattern Graphics

Coupled TwoTheta/Theta 03:51:52 SSD160 (1D mode): PSD counter

Experiment

User ID Instru	ument 375 D2-212186				
Time 3/2/202	20 4:16:00 AM				
Sample ID					
Commander					
Sample ID					
Raw File ID352 Scan type	Coupled TwoTheta/Theta				
Scan mode	PsdFastScan				
2Theta	Start: 10.002269918 [°]	Increment:	0.050511538575	[°]	Stop:
	70.012269918 [°]				
Theta	Start:5.001134959 [°]35.00613	_{4959 [°]} Increment:	0.0252557692875	[°]	Stop:

A. Sampel titik 3

Match! Phase Analysis Report

Sample: MINERAL SILIKA T3_exported Sample Data

Sample Data	
File name	MINERAL SILIKAT3_exported.xy
File path	E:/PNUP/XRD
Data collected	Mar 4, 2020 22:29:21
Data range	9.942° - 69.948°
Number of points	1189
Step size	0.051
Rietveld refinement conver	gedNo
Alpha2 subtracted Background subtr.	Yes No
Data smoothed	No
2theta correction	-0.06°
Radiation	X-rays
Wavelength	1.540598 Å

Matched Phases

Inde	Amount	Name	Formula
Â	100.0	Quartz	O2 Si
	15.4	Unidentifie	d peak area
A: Quar	tz (100.0 %)		
Formula	sum	C	2 Si
Entry nu	mber	96	901-2603
Figure-o	f-Merit (FoM)	0.	746527
Total nur	nber of peaks	; 3	2
Peaks in	range	1	3
Peaks m	atched	9	
Intensity	scale factor	1	.00
Space g	roup	- A F	31 2 1
Crystal s	ystem	ti ti	igonal (hexagonal axes)
Unit cell		a	= 4.7050 Å c=5.2500 Å
l/lcor		3	.93
Calc. de	nsity	2	.974 g/cm³
Reference	ce	H 0 5	azen R. M., Finger L. W., Hemley R. J., Mao H. K., "High-pressure crystal hemistry and amorphization of alpha-quartz Locality: synthetic Sample: P = .1 GPa", Solid State Communications 72 , 507-511 (1989)

Candidates

Name	Formula	Entry No.	FoM
Diopside	B0.044 Ca0.784 Mg0.85 Na0.19 O6 Si1.892 Ti0.254	96-900-5681	0.8488
Hedenbergite	Ca0.6 Fe Na0.4 O6 Si2	96-900-5434	0.8485
Diopside	B0.022 Ca0.82 Mg0.846 Na0.168 O6 Si1.882 Ti0.272	96-900-5679	0.8469
Augite	Ca Fe0.25 Mg0.74 O6 Si2	96-900-9665	0.8460
Hedenbergite	Al0.24 Ca0.76 Fe0.76 Na0.24 O6 Si2	96-901-0329	0.8456
Hedenbergite	Ca0.615 Fe Na0.385 O6 Si2	96-901-0081	0.8454
Jadeite	Al0.24 Ca0.76 Fe0.76 Na0.24 O6 Si2	96-901-0474	0.8441
Diopside	Al0.078 Ca Fe0.016 Mg0.984 O6 Si1.922	96-900-4314	0.8436
Diopside	B0.024 Ca0.844 Mg0.922 Na0.128 O6 Si1.888	96-900-5683	0.8421

	Ti0.188		
Diopside	Ca Mg0.78 Ni0.22 O6 Si2	96-900-1307	0.8413
Diopside	B0.024 Ca0.836 Mg0.892 Na0.14 O6 Si1.888 Ti0.206	96-900-5682	0.8407
Diopside	Al0.078 Ca Fe0.01 Mg0.99 O6 Si1.922	96-900-4319	0.8399
Diopside	Al0.029 Ca0.798 Cr0.071 Fe0.059 K0.073 Mg0.955 Na0.023 O6	Si1.99296- 900-1741	0.8398
Diopside	Al0.078 Ca Fe0.002 Mg0.998 O6 Si1.922	96-900-4321	0.8391
Hedenbergite	Ca0.503 Fe Na0.497 O6 Si2	96-901-0085	0.8385
Hedenbergite	Ca0.55 Fe Na0.45 O6 Si2	96-901-0082	0.8378
Diopside	B0.028 Ca0.872 Mg0.906 Na0.118 O6 Si1.94	96-900-5680	0.8376
Diopside	B0.018 Ca0.916 Mg0.926 Na0.066 O6 Si1.96	96-900-5678	0.8371
Diopside	Al0.078 Ca Fe0.03 Mg0.97 O6 Si1.922	96-900-4315	0.8366
Diopside	Al0.078 Ca Fe0.024 Mg0.976 O6 Si1.922	96-900-4318	0.8362
Diopside-	Ca Fe0.194 Mg0.906 Ŏ6 Si1.9	96-900-5337	0.8359
ferrian	5		
Diopside	Al0.068 Ca Fe0.008 Mg0.992 O6 Si1.932	96-900-4312	0.8355
Diopside	Al0.078 Ca Fe0.008 Mg0.992 O6 Si1.922	96-900-4320	0.8354
Diopside	Al0.078 Ca Fe0.008 Mg0.992 O6 Si1.922	96-900-4313	0.8353
Diopside- ferrian	Ca Fe0.267 Mg0.857 O6 Si1.876	96-900-5338	0.8353
Clinopyroxene	Ca0.5 Fe Na0.5 O6 Si2	96-900-5435	0.8352
Diopside	Ca Fe0.18 Mg0.82 O6 Si2	96-900-4211	0.8350
Diopside-	Ca Fe0.445 Mg0.805 O6 Si1.75	96-900-5339	0.8350
Terrian Diopside	Al0.078 Ca Fe0.018 Mg0.982 <mark>O6 Si</mark> 1.922	96-900-4316	0.8349
Diopside	Al0.209 Ca0.896 K0.072 Mg0.887 O6 Si1.936	96-900-5561	0.8346
Diopside	Al0.078 Ca Fe0.052 Mg0.948 O6 Si1.922	96-900-4317	0.8345
Aegirine	Ca0.488 Fe Na0.512 O6 Si2	96-901-0084	0.8345
Diopside	Ca Mg O6 Si2	96-900-0798	0.8340
Augite	Al Ca0.61 Fe0.13 K0.17 Mg0.43 Mn0.01 Na0 05 O6 Si1 61	96-900-2902	0.8333
Diopside	Al0.078 Ca Fe0.038 Mg0.962 O6 Si1.922	96-900-4322	0.8333
Hedenberaite	Ca0.506 Fe Na0.494 O6 Si2	96-901-0083	0.8333
Diopside	Ca Fe0.26 Mg0.74 O6 Si2	96-900-4212	0.8322
Diopside	Ca Mg0.55 Nĭ0.45 O6 Si2	96-900-1306	0.8320
Diopside	Al0.06 Ca0.91 Fe0.1 Mg0.91 Na0.05 O6	96-900-1333	0.8319
Diopside	Ca Mg O6 Si2	96-900-5334	0.8312
Hedenberaite	Ca0.501 Fe Na0.499 O6 Si2	96-901-0086	0.8312
Diopside	Ca Fe0.205 Mg0.895 O6 Si1.9	96-900-5336	0.8307
(Hf0.08	Hf0.08 Pu0.92	96-152-2482	0.8306
Pu0.92) Diopside	Ca Mg0 26 Ni0 74 O6 Si2	96-900-1305	0 8295
			5.0200

Peak List

No.	2theta [°]	d [Å]	1/10	FWHM	Matched
1	10.51	8.4115	53.74	0.2020	
2	10.90	8.1121	89.83	0.2020	
3	11.13	7.9439	80.76	0.2020	
4	11.62	7.6103	67.79	0.2020	
5	11.88	7.4463	66.03	0.2020	
6	12.47	7.0940	37.05	0.2020	
/	13.59	6.5107	79.30	0.2020	
0	15.20	5.6257	31.77	0.2020	
10	17.20	0.1000	39.45	0.2020	
10	10.00	4.0970	35.09	0.2020	
12	19.54	4.3003	35.09 45.46	0.2020	
12	21 35	4.4703	43.40	0.2020	
1/	21.00	4.1504	132.00	0.2020	٨
14	21.09	3 9162	85.12	0.2020	-
16	23.57	3 7712	323 49	0.2020	
17	20.07	3 6398	181.35	0.2020	
18	25.32	3 5144	36.48	0.2020	
19	25.02	3 4589	81.90	0.2020	
20	26.44	3 3686	74 80	0.2020	
21	26.77	3.3281	39.47	0.2020	
22	26.88	3.3140	43.68	0.2020	
23	27.22	3.2739	35.52	0.2020	
24	27.37	3.2561	205.89	0.2020	
25	27.64	3.2251	1000.00	0.2020	А
26	28.36	3.1450	98.56	0.2020	
27	29.38	3.0378	64.03	0.2020	
28	29.69	3.0064	107.13	0.2020	
29	29.77	2.9984	409.25	0.2020	
30	30.15	2.9621	100.84	0.2020	
31	30.76	2.9046	227.11	0.2020	
32	31.43	2.8441	84.86	0.2020	
33	31.93	2.8005	43.11	0.2020	
34	32.15	2.7820	49.44	0.2020	
35	32.37	2.7632	33.59	0.2020	
36	33.66	2.6606	38.55	0.2020	
37	34.91	2.5677	252.23	0.2020	
38	35.54	2.5239	383.93	0.2020	
39	36.31	2.4723	63.61	0.2020	
40	37.11	2.4204	41.73	0.2020	
41	39.12	2.3008	74.26	0.2020	
42	40.55	2.2229	36.65	0.2020	
43	41.52	2.1733	51.57	0.2020	
44	41.97	2.1509	202.36	0.2020	A
45	42.23	2.1384	178.50	0.2020	
40	42.82	2.1103	117.68	0.2020	
47	43.15	2.0947	35.55	0.2020	•
40	44.34	2.0413	100.96	0.2020	A
49	44.73	2.0242	95.20 56.54	0.2020	
50	45.10	2.0000	51.05	0.2020	
52	40.94 AG 11	1 9530	38.81	0.2020	
53	40.44	1 8851	67 53	0.2020	
54	49 09	1 8543	43.88	0.2020	
55	49.57	1 8376	91.53	0 2020	
56	50 17	1 8170	36 72	0 2020	
57	50 60	1.8025	56.96	0.2020	
58	50.84	1,7946	51 22	0.2020	
59	50.95	1.7910	50.46	0,2020	
60	51.42	1.7756	60.35	0.2020	
-					

55

61	52.13	1.7530	131.75	0.2020	
62	53.15	1.7219	39.88	0.2020	
63	56.50	1.6274	185.20	0.2020	
64	56.96	1.6154	134.41	0.2020	
65	58.17	1.5846	38.84	0.2020	
66	59.00	1.5643	45.75	0.2020	
67	59.12	1.5615	35.45	0.2020	
68	59.66	1.5486	59.09	0.2020	
69	60.26	1.5345	68.25	0.2020	
70	60.71	1.5243	74.26	0.2020	
71	61.12	1.5150	36.64	0.2020	
72	61.34	1.5102	52.73	0.2020	
73	61.49	1.5069	83.53	0.2020	
74	61.98	1.4961	72.22	0.2020	
75	62.36	1.4878	77.19	0.2020	
76	62.51	1.4845	69.47	0.2020	
77	65.58	1.4224	99.26	0.2020	
78	66 21	1 4104	69 65	0 2020	

Calculation was not run or did not converge.

		Integrated Profile Areas
Based on calculated profile		
Profile area Overall diffraction profile Background radiation Diffraction peaks Peak area belonging to selected phases <i>Peak area of phase A (Quartz)</i> Unidentified peak area	Counts 9335 7722 1612 247 247 1434	Amount 100.00% 82.73% 17.27% 2.65% 2.65% 15.36%
		Peak Residuals
Peak data Overall peak intensity Peak intensity belonging to selected phases Unidentified peak intensity	Counts 51 9 41	Amount 100.00% 18.39% 81.61%
Diffraction Pattern Graphics		

А

А

А

Rietveld Refinement using FullProf

Coupled TwoTheta/Theta 04:42:00 SSD160 (1D mode): PSD counter

User ID Instrument 375 D2-212186

Time 3/2/2020 5:17:52 AM Sample ID Commander Sample ID

Raw File ID

Scan type Scan mode	Coupled TwoTheta/Theta PsdFastScan				
2Theta	Start: 10.002269918 [°]70.012269918 [°]	Increment:	0.050511538575	[°]	Stop:
Theta	Start: 5.001134959 [°]35.006134959 [°]	Increment:	0.025255769287 5	[°]	Stop:

d.sampel titik 4 Match! Phase Analysis Report

Sample: MINERAL SILIKA T4_exported

Si O2

Stishovite

Stishovite

Stishovite

Stishovite Stishovite Stishovite

MINERAL SILIKAT4	4_exported.xy	
E:/PNUP/XRD		
Mar 4, 2020 22:29:	21	
9.952° - 69.958°		
189		
0.051		
edNo		
Yes No		
No		
-0.05°		
X-rays		
1.540598 Å		
Phases		
Name	For	mula
Quartz	0	D2 Si
nidentified peak area		
O2 Si		
6-901-2603		
0.783409		
32		
13		
10		
0.96		
P 31 2 1	TOTO	
trigonal (hexagonal a	kes)	
a= 4.7050 A c= 5.250	0 A	
3.93		
2.974 g/cm ³	W. Hamlau D. I	Marshi K. William marshi amatal
Hazen R. M., Finger L	. W., Hemiey R. J.	, Mao H. K., "Hign-pressure crystal
5 1 CPo" Solid State	Communications	$\frac{1}{2}$ $\frac{1}$
Cand	idatos	72, 307-311 (1969)
Canu	luates	
Formula	Entry No.	FoM
O2 Si	96-901-2602	0.7314
) 015 515 02 Si	96-210-6716 96-412-4080	0.7217
O2 Si	96-210-6356	0.7085
	MINERAL SILIKAT E:/PNUP/XRD Mar 4, 2020 22:29:: 9.952° - 69.958° 189 0.051 edNo Yes No No -0.05° X-rays 1.540598 Å Phases Name Quartz nidentified peak area O2 Si 6-901-2603 0.783409 32 13 10 0.96 P 31 2 1 trigonal (hexagonal az a= 4.7050 Å c=5.250 3.93 2.974 g/cm ³ Hazen R. M., Finger L chemistry and amorpl 5.1 GPa", Solid State Cand Formula O2 Si O2 Si O2 Si 0.015 Si5 O2 Si O2 Si O2 Si	MINERAL SILIKAT4_exported.xy E:/PNUP/XRD Mar 4, 2020 22:29:21 9.952° - 69.958° 189 0.051 edNo Yes No No -0.05° X-rays 1.540598 Å Phases Name For Quartz 0 nidentified peak area O2 Si 6-901-2603 0.783409 32 13 10 0.96 P 31 2 1 trigonal (hexagonal axes) a= 4.7050 Å c=5.2500 Å 3.93 2.974 g/cm ³ Hazen R. M., Finger L. W., Hemley R. J. chemistry and amorphization of alpha-of 5.1 GPa", Solid State Communications Candidates Formula Entry No. 02 Si 96-901-2602) O15 Si5 96-210-6716 02 Si 96-910-6356

O2 Si

O2 Si

O2 Si

O2 Si

O2 Si O2 Si

O2 Si

96-153-2515

96-900-5853

96-900-5854

96-900-5855

96-900-5856 96-901-2692 96-900-1684 0.7046

0.6912

0.6912

0.6911 0.6911 0.6910

0.6903

Si O2	O2 Si	96-412-4084	0.6899
Stishovite	O2 Si	96-900-7531	0.6884
Stishovite	O2 Si	96-900-1280	0.6866
Cristobalite II	O2 Si	96-901-5393	0.6820
Stishovite	O2 Si	96-900-1281	0.6759
Quartz	O2 Si	96-901-2605	0.6745
Si O2	O2 Si	96-412-4073	0.6711
Stishovite	O2 Si	96-900-1277	0.6660
Stishovite	O2 Si	96-900-7152	0.6601
Quartz	O2 Si	96-901-2606	0.6589
Quartz	O2 Si	96-900-5027	0.6584
Quartz	O2 Si	96-900-5029	0.6583
Quartz	O2 Si	96-900-5028	0.6582
Quartz	O2 Si	96-900-5031	0.6582
Quartz	O2 Si	96-900-5026	0.6579
Quartz	02 Si	96-900-5030	0.6578
Silicon oxide (Quartz high)	02 Si	96-110-0020	0.6574
Quartz	02 Si	96-900-5032	0.6572
Si O2	02 Si	96-153-6410	0.6557
Cristobalite	O2 Si	96-900-1582	0.6556
Quartz	02 Si	96-900-5034	0.6552
Quartz	02 Si	96-900-5033	0.6551
Stishovite	02 Si	96-900-1278	0.6549
Si O2	02 Si	96-412-4071	0.6539
Stishovite	02 Si	96-900-7151	0.6512
Si O2	02 33333 Si	96-412-4118	0.6497
Si 02	02 Si	96-810-4323	0.6483
Cristobalite	02 Si	96-901-6250	0.6483
Si O2	02 Si	96-412-4075	0 6450
Cristobalite	02 Si	96-901-4437	0 6405
Stishovite	02 Si	96-900-5797	0.6392
Stishovite	02 Si	96-900-1279	0.6376
olisiovite	02 Si	96-900-6291	0.6346
Si 02	02 Si	96-153-6407	0.6342
Stishovite	O2 Si	96-900-1683	0.6327
Si O2	O2 Si	96-810-3514	0.6317
Office and the	00.0	00 000 5700	0.0017
Cristobalita	02 51	90-900-5798	0.6317
Silicon dioxide - \$-beta (Cristobalite	02 Si	96-101-0945	0.6248
high)	02.01	30-101-0340	0.0240
Silicon oxide (Cristobalite high)	O2 Si	96-101-0955	0.6248
	O2 Si	96-900-6303	0.6236
and 22 others			
Search-Match

Selection Criteria

Settings	
Reference database used	COD-Inorg REV173445
	2016.01.04
Automatic zeropoint adaptation	Yes
Minimum figure-of-merit (FoM)	0.60
2theta window for peak	0.30
corr. Minimum rel. int. for	deg. 1
peak corr.	
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single	0.50
phase(s)	

Elements:

Eler pres	nents that m sent:	ust be	O, Si	mont not r	pontioned	
Eler Pres	nents that m sent:	ust NOT be	above		nentioned	Peak List
No	Othota 1º1	d (Å)	1/10	EWUM	Matchod	
1	10.78	8 2024	65 14	0 2020	Watcheu	
2	10.70	8 0998	72 99	0.2020		
3	11 18	7 9066	69.25	0.2020		
4	11.10	7 5913	69.48	0.2020		
5	12.12	7 2978	62 67	0.2020		
6	13.62	6.4939	103.13	0.2020		
7	18.91	4 6893	44 39	0.2020		
8	19.34	4.5854	42.45	0.2020		
9	19.89	4.4607	78.31	0.2020		
10	21.37	4.1552	103.03	0.2020		
11	21.93	4.0500	126.49	0.2020	А	
12	22.73	3.9097	115.60	0.2020		
13	23.61	3.7657	317.17	0.2020		
14	23.98	3.7074	33.73	0.2020		
15	24.48	3.6339	139.65	0.2020		
16	25.02	3.5561	39.31	0.2020		
17	25.73	3.4593	115.09	0.2020		
18	26.50	3.3603	84.33	0.2020		
19	27.28	3.2668	194.50	0.2020		
20	27.67	3.2211	1000.00	0.2020	A	
21	27.83	3.2028	556.73	0.2020		
22	28.09	3.1746	93.43	0.2020		
23	28.39	3.1409	131.66	0.2020		
24	28.81	3.0960	36.70	0.2020		
25	29.00	3.0769	36.94	0.2020		
26	29.41	3.0344	82.46	0.2020		
27	29.70	3.0054	130.73	0.2020		
28	29.81	2.9944	432.86	0.2020		
29	30.16	2.9611	93.84	0.2020		
30	30.26	2.9516	392.85	0.2020		
31	31.45	2.8423	70.03	0.2020		
32	31.86	2.8065	40.50	0.2020		
33	32.33	2.7669	49.46	0.2020		
34	33.71	2.6566	44.67	0.2020		
35	34.96	2.5644	204.21	0.2020		

36	35.53	2.5248	351.11	0.2020				
37	36.28	2.4741	42.29	0.2020				
38	37.10	2.4211	50.68	0.2020				
39	38.11	2.3592	33.39	0.2020	Α			
40	39.15	2.2991	47.53	0.2020				
41	40.71	2.2147	45.44	0.2020	Α			
42	41.59	2.1695	78.24	0.2020				
43	42.02	2.1485	146.07	0.2020	Α			
44	42.26	2.1368	149.05	0.2020				
45	42.86	2.1081	92.24	0.2020				
46	44.35	2.0411	93.22	0.2020	Α			
47	44.77	2.0229	69.79	0.2020				
48	45.10	2.0088	42.96	0.2020				
49	45.55	1.9900	40.65	0.2020				
50	46.01	1.9711	50.78	0.2020				
51	46.51	1.9510	36.18	0.2020				
52	48.28	1.8834	61.19	0.2020				
53	49.63	1.8354	113.59	0.2020				
54	50.65	1.8008	74.43	0.2020				
55	51.48	1.7736	50.58	0.2020				
56	52.18	1.7514	116.43	0.2020	А			
57	53.15	1.7217	32.35	0.2020				
58	56.48	1.6279	100.78	0.2020				
59	56.95	1.6157	79.25	0.2020	A			
60	59.69	1.5478	56.91	0.2020				
61	60.45	1.5302	44.37	0.2020				
62	60.69	1.5240	01.40 40.44	0.2020				
64	62.09	1.0001	40.44	0.2020				
64 65	62.08	1.4930	09.10	0.2020				
66	65.62	1.4001	90.09	0.2020				
67	66.28	1.4217	112.13	0.2020				
07	00.20	1.4031	40.10	0.2020				
					Rie	tveld Refinem	ent using FullP	rof
					I NIC		chi ushigi ulli i	01
Calc	vulation was	not run or c	lid not					
Calc			ilu not					
COIN	/eige.							
						Integrated Pro	ofile Areas	
Bas	ed on calcu	lated profi	le					
Dura					0			
Prot	rile area	n nrofilo			Counts	Amount		
Bac	rail unitactio	ation			7/97	82 21%		
Daci	action neaks				1620	17 70%		
Dini	k area belon	, aina to sole	octed phase	e 240	1020	274%		
Pea	k area of nha	se A (Oua	rtz)	249		2.74%		
Unic	lentified neal	k area	(2)	245	1454	15 96%		
Onic	ientinea pea	Ruiou			1404	10.0070		
						Peak Res	siduals	
Pea	k data				Counts	Amount		
Ove	rall peak inte	ensity		52		100.00%		
Pea	k intensitv be	elonging to	selected	10		18.85%		
phas	ses					- · ·		
Unic	lentified pea	k intensity		42		81.15%		

Diffraction Pattern Graphics

375 D2-212186 3/2/2020 5:41:29 AM Commander Sample ID 355

e. sampel titik 5

Match! Phase Analysis Report

Sample: MINERAL SILIKA T5_exported

Candidates

Name Quartz Si O2 Si38 O76 Stishovite Stishovite Si O2 Stishovite Si O2 Stishovite	<i>Formula</i> O2 Si O2 Si O76 Si38 O2 Si O2 Si O2 Si O2 Si O2 Si O2 Si O2 Si	Entry No. 96-901-2604 96-412-4056 96-152-1502 96-900-7151 96-900-7531 96-412-4080 96-900-1683 96-900-1683 96-900-5800 96-900-5800	FoM 0.7394 0.7332 0.7298 0.7248 0.7243 0.7220 0.7189 0.7182 0.7172
Si O2 Stishovite Stishovite Stishovite Stishovite Stishovite Stishovite Stishovite	02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si	96-412-4070 96-900-1684 96-900-5798 96-900-5851 96-900-5853 96-900-5855 96-900-5855 96-900-5856 96-901-2692	0.7168 0.7155 0.7154 0.7153 0.7153 0.7142 0.7142 0.7142 0.7142 0.7142
(Li0.55 Na0.45) Mn4 (Si5 O14 (O H)) Stishovite Si O2 Si O2 Tridymite Tridymite Si O2	015 Si5 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si	96-210-6716 96-900-5797 96-412-4068 96-810-3727 96-900-6308 96-901-3493 96-900-6969 96-412-4039	0.7116 0.7113 0.7084 0.7050 0.7048 0.7043 0.7032 0.7024
Stishovite Si O2 Si O2 Tridymite Si O2 Si O2 Cristobalite	02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si	96-900-1277 96-810-4323 96-412-4082 96-901-3494 96-412-4047 96-900-6298 96-412-4076 96-901-5088	0.7020 0.7011 0.7006 0.6954 0.6942 0.6920 0.6918 0.6916
Si O2 Si O2 Silicon oxide (Cristobalite low) Stishovite Cristobalite Si O2 Cristobalite Quartz	02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si	96-412-4073 96-412-4067 96-101-0939 96-900-7153 96-900-1579 96-210-6356 96-900-9687 96-901-1494 96-900-6291	0.6914 0.6910 0.6904 0.6899 0.6879 0.6878 0.6855 0.6841 0.6837
Stishovite Quartz Cristobalite Quartz Quartz Tridymite and 92 others	02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si	96-900-6304 96-900-1278 96-901-0147 96-900-8228 96-900-5019 96-901-0146 96-900-0776 96-901-3492	0.6828 0.6822 0.6819 0.6796 0.6783 0.6779 0.6777 0.6773

Search-Match

Settings Reference database used Automatic zeropoint adaptation

COD-Inorg REV173445 2016.01.04 Yes

Minimum figure-of-merit (FoM)0.602theta window for peak corr.0.30 deg.Minimum rel. int. for peak corr.1Parameter/influence 2theta0.50Parameter/influence intensities0.50Parameter multiple/single phase(s)0.50

Elements:

O, Si

Elements that must be present: elements that must NOT be present:

All elements not mentioned above

Selection Criteria

					Dook Lie
					Peak Lis
No.	2theta [°]	d [Å]	1/10	FWHM	Matched
1	10.72	8.2481	47.21	0.2020	
2	10.92	8.0924	58.61	0.2020	
3	11.15	7.9302	62.31	0.2020	
4	11.43	7.7347	59.86	0.2020	
5	11.76	7.5206	43.31	0.2020	
6	11.98	7.3808	39.06	0.2020	
7	12.25	7.2175	35.95	0.2020	
8	13.85	6.3876	97.49	0.2020	
9	14.70	6.0224	47.50	0.2020	
10	14.90	5.9398	46.45	0.2020	
11	15.31	5.7826	56.69	0.2020	
12	16.26	5.4467	33.96	0.2020	
13	16.55	5.3536	37.72	0.2020	
14	16.78	5.2794	33.30	0.2020	
15	17.03	5.2031	38.63	0.2020	
16	17.31	5.1181	35.04	0.2020	
17	17.51	5.0601	32.88	0.2020	
18	17.80	4.9790	31.54	0.2020	
19	10.44	4.0000	41.27	0.2020	
20	10.63	4.0334	54.65	0.2020	
21	20.13	4.5191	82.82	0.2020	
23	20.15	4.4077	31.95	0.2020	
24	21.61	4 1085	107 23	0 2020	
25	22.17	4.0072	125.55	0.2020	
26	22.96	3.8696	119.94	0.2020	
27	23.84	3.7300	306.33	0.2020	
28	24.69	3.6023	127.62	0.2020	
29	25.59	3.4776	33.08	0.2020	
30	25.98	3.4267	88.93	0.2020	
31	26.75	3.3296	67.66	0.2020	
32	27.52	3.2387	150.51	0.2020	
33	27.93	3.1919	1000.00	0.2020	

34	28.33	3.1481	42.60	0.2020	
35	28.63	3.1159	97.43	0.2020	Α
36	29.63	3.0127	58.93	0.2020	
37	29.94	2.9818	93.21	0.2020	
38	30.05	2.9713	412.83	0.2020	
39	30.51	2.9276	426.26	0.2020	
40	31.02	2.8806	196.31	0.2020	
41	31.69	2.8215	60.86	0.2020	
42	32.17	2.7800	37.54	0.2020	
43	32.51	2.7515	44.88	0.2020	
44	33.92	2.6404	35.10	0.2020	
45	35.19	2.5482	214.87	0.2020	
46	35.78	2.5076	367.77	0.2020	
47	36.53	2.4580	55.55	0.2020	
48	37.36	2.4048	42.68	0.2020	
49	39.35	2.2877	66.38	0.2020	
50	40.80	2.2097	37.56	0.2020	
51	41.17	2.1907	33.96	0.2020	
52	41.83	2.1578	88.15	0.2020	Α
53	42.23	2.1382	178.26	0.2020	
54	42.51	2.1250	159.88	0.2020	
55	43.10	2.0971	119.65	0.2020	
56	44.61	2.0295	104.73	0.2020	
57	44.97	2.0142	85.16	0.2020	
58	45.37	1.9974	48.34	0.2020	

Rietveld Refinement using FullProf

Calculation was not run or did not converge.

			Integrated F	Profile Areas
Based on calculated profile				
Profile area Overall diffraction profile Background radiation Diffraction peaks Peak area belonging to selected phases Peak area of phase A (Quartz) Unidentified peak area	30 30	Counts 8789 7139 1650 1640	Amount 100.00% 81.23% 18.77% 0.34% 0.34% 18.66%	
			Peak Re	siduals
<i>Peak data</i> Overall peak intensity Peak intensity belonging to selected phases Unidentified peak intensity	53 1 52	Counts	<i>Amount</i> 100.00% 1.95% 98.05%	

Diffraction Pattern Graphics

Coupled TwoTheta/Theta 05:42:26 SSD160 (1D mode): PSD counter

Scan type Scan mode 2Theta	CoupledTwo PsdFast Start: 10.002	Theta/Theta Scan 269918 ቲማር [°]	Incremen t:	0.050511538575	[°]	Stop:
፝ ^ዀ ምታን 12269918	Start:	5.001134959	[°]Increm	0.025255769287 5	[°]	Stop:

2. Hasil analisis XRF

a. Sampel titik 1 SAMPLE ANALYSIS REPORT THERMO FISHER SCIENTIFIC ARL QUANT'X EDXRF ANALYZER UNIQUANT(TM) STANDARDLESS **METHOD** C:\UQed\USER\Quant'X\Job\JOB.262 2020-07-14 MinSilica#titiK1 OKS Ouant'X Rh end window 50kV C:\UQed\USER\Quant'X\Appl\AnySampleAir.kap 2008-06-13 Matrix (Shape & ImpFc): 1|Teflon Calculated as : Oxides X-ray path = Air Film type = No supporting film Case number = 0 All known Eff.Diam. = 13.0 mmEff.Area = 132.7 mm2 KnownConc = 0 %= 0 % Viewed Mass = 1000.000 mgRest Dil/Sample = 0Sample Height = 7.54 mm**StdErr** Compound m/m% StdErr | El m/m% ----- ------ | ---SiO2 57.13 0.68 | Si 26.71 0.32 Fe2O3 17.97 0.23 | Fe 12.57 0.16 CaO 13.55 0.17 | Ca 9.69 0.12 Al2O3 6.96 1.01 | Al 3.69 0.53 K2O 2.28 0.14 | K 1.90 0.11 1.10 0.13 | Ti TiO2 0.660 0.075 0.396 0.038 | Mn MnO 0.307 0.030 0.132 0.043 P2O5 0.303 0.098 | Px SrO 0.202 0.010 | Sr 0.171 0.009 0.029 0.014 | Ba 0.026 0.012 BaO Nb2O5 0.0224 0.0018 | Nb 0.0157 0.0013 0.0173 0.0015 | Mo MoO3 0.0115 0.0010 ZnO 0.0133 0.0061 | Zn 0.0107 0.0049 In2O3 0.0054 0.0004 | In 0.0045 0.0003 SnO2 0.0054 0.0008 | Sn 0.0043 0.0006 RuO4 0.0053 0.0014 | Ru 0.0040 0.0010

KnownConc= 0REST= 0D/S= 0Sum Conc's before normalisation to 100% :63.1 %Total % stripped Oxygen:44.105

b. Sampel titik 2 SAMPLE ANALYSIS REPORT THERMO FISHER SCIENTIFIC ARL QUANT'X EDXRF ANALYZER UNIQUANT(TM) STANDARDLESS **METHOD** C:\UQed\USER\Quant'X\Job\JOB.259 2020-07-14 MinSil#ttk2 oks Quant'X Rh end window 50kV C:\UQed\USER\Quant'X\Appl\AnySampleAir.kap 2008-06-13 Calculated as : Oxides Matrix (Shape & ImpFc): 1|Teflon X-ray path = Air Film type = No supporting film Case number = 0 All known Eff.Diam. = 13.0 mmEff.Area = 132.7 mm2KnownConc = 0 %Rest = 0 %Viewed Mass = 1000.000 mgDil/Sample = 0Sample Height = 7.54 mmCompound m/m% StdErr | El m/m% StdErr ----- | --SiO2 56.35 0.67 | Si 26.35 0.31 Fe2O3 18.27 0.23 | Fe 12.78 0.16 CaO 13.63 0.17 | Ca 9.75 0.12 3.60 0.53 Al2O3 6.79 1.01 | Al K2O 2.14 0.14 | K 1.77 0.12 TiO2 1.48 0.06 | Ti 0.888 0.037 P2O5 0.390 0.098 | Px 0.170 0.043 0.346 0.038 | Mn 0.268 0.029 MnO 0.25 0.11 V V2O5 0.140 0.062 0.175 0.009 SrO 0.207 0.010 | Sr 0.045 0.014 0.051 0.015 | Ba BaO Nb2O5 0.0235 0.0021 | Nb 0.0164 0.0015 0.0187 0.0017 | Mo 0.0125 0.0011 MoO3 ZnO 0.0169 0.0065 | Zn 0.0136 0.0052 In2O3 0.0073 0.0005 | In $0.0060 \ 0.0004$ 0.0063 0.0015 | Ru 0.0048 0.0012 RuO4 SnO2 0.0062 0.0010 | Sn 0.0049 0.0007 KnownConc=0REST = 0D/S=0Sum Conc's before normalisation to 100% : 61.9 % Total % stripped Oxygen: 44.008

c. Sampel titik 3 SAMPLE ANALYSIS REPORT ARL QUANT'X EDXRF ANALYZER METHOD

THERMO FISHER SCIENTIFIC UNIQUANT(TM) STANDARDLESS

C:\UQed\USER\Quant'X\Job\JOB.260 2020-07-14 MinSilica#ttk3 oks

Quant'X Rh end window 50kV C:\UQed\USER\Quant'X\Appl\AnySampleAir.kap 2008-06-13 Matrix (Shape & ImpFc) : 1|Teflon Calculated as : Oxides X-ray path = Air Film type = No supporting film Case number = 0 All known Eff.Diam. = 13.0 mm Eff.Area = 132.7 mm2 KnownConc = 0 %= 0 % Viewed Mass = 1000.000 mg Rest Dil/Sample = 0 Sample Height = 7.54 mm

Compound	m/m%	StdErr	E1	m/m%	StdErr
SiO2	56.30	0.67	Si	26.32	0.31
Fe2O3	17.53	0.22	Fe	12.26	0.16
CaO	13.89	0.18	Ca	9.93	0.13
Al2O3	7.98 (0.99	Al	4.23	0.53
K2O	2.10	0.14	K	1.75	0.12
TiO2	1.10	0.12	Ti	0.658	0.071
P2O5	0.396 0	0.098	Px	0.173	0.043
MnO	0.369 ().035	Mn	0.286	0.027
SrO	0.206 (0.010	Sr	0.174	0.009
BaO	0.041 0	0.016	Ba	0.036	0.014
Nb2O5	0.0232	0.0021	Nb	0.0162	0.0015
MoO3	0.0170	0.0021	Mo	0.0113	0.0014
ZnO	0.0134	0.0062	Zn	0.0108	0.0050
SnO2	0.0074	0.0009	Sn	0.0058	0.0007
In2O3	0.0071	0.0005	In	0.0059	0.0004
RuO4	0.0063	0.0015	Ru	0.0048	0.0011
KnownConc=0	R	EST=0		D/S=	= 0
Sum Conc's before	normalisat	tion to 10	00%:	62.2 %	

Total % stripped Oxygen: 44.127

d. Sampel titik 4 SAMPLE ANALYSIS REPORT ARL QUANT'X EDXRF ANALYZER METHOD

C:\UQed\USER\Quant'X\Job\JOB.261 2020-07-14

THERMO FISHER SCIENTIFIC UNIQUANT(TM) STANDARDLESS

MinSilica#titik4 OKS Quant'X Rh end window 50kV C:\UQed\USER\Quant'X\Appl\AnySampleAir.kap 2008-06-13 Calculated as : Oxides Matrix (Shape & ImpFc): 1|Teflon X-ray path = Air Film type = No supporting film Case number = 0 All known Eff.Area Eff.Diam. = 13.0 mm= 132.7 mm2KnownConc = 0 %Rest = 0% Viewed Mass = 1000.000 mgDil/Sample = 0Sample Height = 7.54 mmCompound m/m% StdErr | El m/m% StdErr -----_____ ----- | ---SiO2 56.82 0.69 Si 26.56 0.32 Fe2O3 18.15 0.23 | Fe 12.69 0.16 9.51 0.13 CaO 13.31 0.18 | Ca 6.93 3.67 0.54 Al2O3 1.02 | Al 0.12 K2O 2.59 0.15 | K 2.15 TiO2 1.09 0.14 | Ti $0.654 \quad 0.082$ P2O5 0.42 0.10 | Px 0.184 0.044 MnO 0.360 0.039 | Mn 0.279 0.030 SrO 0.216 0.011 | Sr 0.183 0.009 0.042 0.015 | Ba 0.038 0.014 BaO 0.0233 0.0022 | Nb Nb2O5 0.0163 0.0015 MoO3 0.0180 0.0017 | Mo 0.0120 0.0011 Y2O3 0.0077 0.0037 | Y 0.0061 0.0029 RuO4 0.0064 0.0015 | Ru 0.0049 0.0011 0.0062 0.0010 | Sn 0.0049 0.0008 SnO2 0.0059 0.0005 | In In2O3 0.0049 0.0004 KnownConc=0REST = 0D/S=0Sum Conc's before normalisation to 100% : 60.5 Total % stripped Oxygen: 44.021

e. Sampel titik 5 SAMPLE ANALYSIS REPORT THERMO FISHER SCIENTIFIC QUANT'X EDXRF ANALYZER UNIQUANT(TM) STANDARDLESS METHOD C:\UQed\USER\Quant'X\Job\JOB.258 2020-07-14 MinSilika#5 oks Quant'X Rh end window 50kV C:\UQed\USER\Quant'X\Appl\AnySampleAir.kap 2008-06-13 Calculated as : Oxides Matrix (Shape & ImpFc): 1|Teflon Film type = No supporting film X-ray path = Air Case number = 0 All known $= 132.7 \text{ mm}^2$ Eff.Diam. = 13.0 mmEff.Area KnownConc = 0% = 0% Viewed Mass = 1000.000 mgRest Sample Height = 7.54 mmDil/Sample = 0 m/m% StdErr Compound m/m% StdErr | El ----- |--26.59 0.32 SiO2 56.87 0.68 | Si Fe2O3 17.92 0.23 | Fe 0.16 12.53 CaO 13.59 0.18 | Ca 9.72 0.13 Al2O3 6.90 1.02 | Al 3.65 0.54 2.04 0.12 K2O 2.46 0.14 | K TiO2 1.19 0.13 | Ti 0.716 0.075 P2O5 0.42 0.10 | Px 0.182 0.044 MnO 0.349 0.037 | Mn 0.271 0.029 SrO 0.221 0.011 | Sr 0.187 0.009 BaO 0.039 0.014 | Ba 0.035 0.013 Nb2O5 0.0168 0.0031 | Nb 0.0117 0.0022 0.0119 0.0031 | Mo MoO3 0.0079 0.0021 In2O3 0.0077 0.0004 | In 0.0064 0.0004 SnO2 0.0069 0.0008 | Sn 0.0054 0.0007 D/S=0KnownConc=0REST=0Sum Conc's before normalisation to 100% : 60.7 % Total % stripped Oxygen: 44.049

Titik 1 (05°18.642' LS dan 119°32.362' BT)

Jaraknya dari titik 1 ke titik 2 yaitu 20 meter dan seterusnya titik 1 ke titik 3, titik 1 ke titik 4 dan titik 1 ke titik 5 yaitu 20 meter.

Lampiran V : Dokumentasi Penelitian

1. Pengambilan Sampel

Pengambilan sampel menggunakan Global Position System (GPS)

Titik 1

Diambil sampel dengan kedalaman 50 cm di bawah permukaan tanah

GARMIN

Titik 1

Titik 4

78

2. Preparasi Sampel

Dihaluskan

Diayak

230 mesh

Hasil ayakan

Ditimbang

3. Karakterisasi XRD dan XRF

