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@:esd is assumed a renewable and environmentally friendly fuel that pdfksses the potential to substitute petroleum diesel.ﬁ
basic purpose of the present study is to design a precise algorithm based on Gaussian Process Regression (GPR) model with several
kernel functions, i.e., Rational Quadratic, Squared Exponential, Matern, and Exponential, to estimate biodiesel properties. These
properties include kinematic viscosity (KV), pour point (PP), iodine value (IV), and cloud point (CP) as a function of fatty add
composition. In order to develop this model, some variables are assumed, such as molecular weight, carbon number, double bfZiid
numbers, monounsaturated fatty acids, polyunsaturated fatty acid, weight percent of saturated acid, and temperature.
performance and efficiency of the GPR model are measured through several statistical criteria and the results are summarized in
root mean square error (RMSE) and coefficients of d@Brmination (R*). R* and RMSE are sorted as 0.992 & 0.15697, 0.998 &
0.96580, 0.966 & 1.38659, and 0.968 & 1.56068 for four{gloperties such as KV, IV, CP, and PP, respectively. Itis worth to mention
this point that the kernel function Squared Exponential shows a great performance for IV and PP and kernel functions Ex-
ponential and Matern indicate appropriate efficiency for CP and KV properties, respectively. On the other hand, the results of the
offered GPR models are compared with those of the previous models, LSSVM-PSO and ANFIS. The outcomes proved the
superiority of this model over two former models in point of estimating the biodiesel properties.

1. Introduction

In the age of increasing greenhouse gases, a sharp fall in oil
resources and rising fossil fuel prices forced the authorities
to attend to biomass resources much more than previous
[1-4]. All of these convincing reasons make the biofuels,
such as biodiesel and bioethanol, suitable and major alter-
natives for fossil fuels [2, 5, 6]. Biodiesel has high adaptability
to the environment and on the other hand is reproducible
fuels [7, 8]. For these convincing reasons, this fuel is a

suitable replacement for petroleum diesel [9-11]. Some fuels
such as biodiesel can be acquired by alcoholics and chain
reactions of animal fats and vegetables with several light
alcohols involving ethanol and methane while acidic cata-
lysts or alkalineis applied to them [12]. These d reactions
mainly diminish the oil viscosity. The general properties of
biodiesel mainly depend on the construction of employed oil
[13]. Many different and determinative properties such as
density, IV, KV, flash, PP, and CP are mentioned for the
quality of biodiesel [14, 15]. The fact is that the experimental




evaluation of these properties is simple, but it required
expansive time and cost. The offering model should predict
the fuel properties, and on the other hand, it should enhance
the quality of biofuel; therefore, it is essential to?posc an
accurate and reliable model. To approximate the Cetane
number about biodiesel, Ramadhas et al. prop a mul-
tilayer feed forward model [16]. To estimate the Cetane
number and fatty acid methyl esters (FAME), Hansen and
q.mgboyc suggested a novel correlation [17]. To measure
the iodingg@nd saponification value of different types of
biodiesel, Gopinath et al. suggested a multiple linear re-
gression model. They could reduce estimation error to about
3.4% [18]. Phankosol and coworkers expanded an experi-
mental model based on double bond and carbon numbers in
various temperature span to evaluate biodiesel viscosity. The
Average Absolute Deviation (AAD) for this algorithm is
estimated to be abo 95% [19]. Rocabruno-Valdes and
coworkers performed an artificial neural network (ANN) to
predict the number of cetane, biodiesel density, and dynamic
viscosity. MSE for validation set of this model is about
1.842 % 1077 [20]. Talebi et al. formed a modern system to
analyze and evaluate biodiesel features according to profile
of FAME [21]. Miraboutalebi and coworkers handled an
ANN model to evaluate cetane numbers. By analyzing
statistical data, it can be understood that RMSE and R? are
about 2.53 and 0.95, respectively [22]. Hong and coworkers
employed fatty acid methylparaben esters profile to ap-
proximate the biodiesel features. The range of Average
Absolute Error (AAE) in Hong work was between 0.14 and
7.5 percent [23]. Giwa and coworkers employed a multilayer
perceptron neural network (MLP) to approximate the
number of cetane in biodiesel features. Their model is in-
spired from five fatty acids [24]. Hosseinpour and coworkers
predicted the number of cetane by mixture of ANN and
partial least square. In this method, the percent error (PE),
R?, and MSE are about 1.06, 0.99, and 0.72, respectively [25].
Mostafaei proposed a system known as ANFIS to predict the
number of cetane in biodiesel [26]. It is noteworthy to
mention that, because of the deficiency of worthy and useful
experimental data, expanding an accurate model can be
helpful to researchers. In recent years, a minority of esti-
mated models such as artificial intelligence methods have
been executed to evaluate material properties and processes
in different applications [27-33]. Recently, with extensive
development in technology and science, some novel and
smart methods are suggested such as GMDH (Group
Method of Data Handling), GPR, ANFIS, ANN, and
LSSVM; by means of these useful methods, many complex
and nonlinear problems can be modelled in many different
branches [34-38].

Based on the study, approximately there are no studies
around biodiesel properties such as PP, CP, KV, and IV; in
other words, there is not any accurate and smart model to be
able to model these four parameters. This work aimed to
extend a detailed model to approxifffle the biodiesel
properties as mentioned above in point of fatty acid methyl
ester utilizing the GPR algorithm. To achieve this goal, an
extensive dataset is utilized and has been evaluated for the
model accuracy and precession by statistical parameters.
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2. GPR Method

2.1. A Summary of Gaussian Process Regression. gussian
Process (GP) is described as a complex of random variables,
in which some variables have a multivariable distribution of
Gaussian. GPRs are nonprometric probabilistic els
which are based on kernel. Suppose a training set, {(x;, ¥;);
i=1,2,...} that y;andx; € R4 and both of them are from
unknown distributions. A trained GPR model predicts the
value of y**" which its input is the matrix x"". Suppose a
linear regression function, y:xrﬁ +¢&, which £ ~ N (0, 0%).
The GPR method tends to explain y by presenting hidden
variables which can be shown by I(x;) thati=1,2,3,....n,
which starts from a Gaussian Process (GP) while the
common distribution of /(x;)'s is a Gaussian function and
fundamental function, b.1(x;)'s is a covariance function that
catches the smoothness of y. The base function has to project
x in a feature space. The dimension of feature space is p.
Covariance and mean are the principal parameters by which
a GP is described. Suppose the mean function of I(x) is
m(x) = E((x)) and its covariance function is k(x, x') = Cov
[l(x), K(x')]. Now assume the GPR model is like
y:b(x)rﬁ +1{x), which b(x)e RY and I(x)
~GP(0,k(x,x')). @ is a hyperparameter of k (x, x') and
therefore can be expressed like k(x, x'|8). Generally, several
algorithms approximate 6, a2, andf8 for training a suitable
model and allocate initial values and some specifications
such as k and b as parameters. This study investigates four
disparate and important kernel functions such as Rational
Quadratic, Matern, Exponential, and Squared Exponential.
Equations (1)-(4) present these specifications, respectively,
and in these equations, g; is the scale of characteristics
length which means how x's can be far from y's to become
unc_prrelated. o, is standard deviation, r= Vi —
xj)I (x;—x;), and on the other hand, & is a positive pa-
rameter with complexity in scale. It is important to mention
that ¢, and o, should be greater than zero [39]. This could be
possible only through 8 which included two parameters 8, =
log 0; and 8, =logo ;.

r2 -
k(x,-,xj|9) = (:r_zr exp (l +Ta§) , (1)
a 2 \V5r 51 V5 r
k(lx,x.|0)=0;]1+ +—le - , 2
ke (154 2)
B ) LR
k(x:,x;10) = o7 ———), 3)

a

8 [ 1 M} (@

k(x,-,xj|9) = o_zf exp(- 5

In such previous equations, four base functions are
studied here as well; these functions include constant, empty,
linear, and pure quadratic as can be seen in equations
(5)-(8), respectively. The specifications of base functions are
as follows:
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X = (30 a2) which B= (b(x,),b(x,),...,b(x,)".

) For estimating 0, a*, and B, the function known as
X X4 (5) marginal log-likelihood that mentioned in e ion
X2 = o, (9) should be maximized. K(X, X|f) in matrix

; ' 2 (k(xl’xl) k(xl’xn))
Xa1 7 Xpg : : is covariance function. The

%n’xl) k(xn’xn)

h Iy, () Ehal goal i maximizing the equation
B = empty matrix, log{P(y|X, B(8, 6?), 02, 9)} based on ¢® and . The function
in the log is known as the likelihood function. Firstly, al-
B=[1,X], (7)  gorithm calculates ‘B(éjgz); this should be maximized in
respect to a’, B, and 6. This assists to obtain f — profile
B =[1,X, X2], (8) likelihood that mentioned above and as mentioned previ-
ously, it should be maximized by two parameters o2 and j8.

1 a 1 n 1
log P(y1X,87,6) = - 3 { (v - BB [K(X,X19) + 0L, ' (y - Bﬁ)} ~Slog 2 71— logK(X.XI8) + 'L (9)

3. Data Gathering

56 laboratory data of IV were extracted from previously
reported sources [18, 21]. 25 and 44 experimental data were
employed for PP and CP, respectively [40, 41]. In addition,
59 data were utilized for KV of biodies 9, 24]. Data are
separated into two categories: 75 percent of the total data are
randomly selected for training and the rest are categorized
into a testing set for validating model. The input data for
evaluation of KV are double bounds number (dn), carbon
number (C,,), and temperature (K). To estimate the IV, the
input data are weight p t of poly unsaturated fatty acid
(PU), monounsaturated fatty acid (MU), and, moreover, the
number of double bonds. To estimate CP, input data include
weight percent of saturated fatty acid (C,), carbon number
(C,). and molecular weight (M,,). For evaluation of PP, the
input data include number of double bond, molecular
weight, and carbon number. C,,, d,, and M, are expressed in
the following formulas:

C, =Y CX, (10)
d,=C,+2xC;y+3xCs, (11)
M, =14x(C,+1)-2xd,+32, (12)
Co=) Co X (13)

In these form ons C;, C5, and C,| represent the sum
of triunsaturated fatty acid methyl esters, di, and mono,
respectively. X, indicates mass fraction [26].

4. Results and Discussion

This study introduced a new algorithm known as GPR to
predict the Biodiesel properties. The principle goal of this
section is the graphical and statistical analysis of the GPR
algorithm. Figures 1-4 show the graphical view between

predicted and experimental output; in other terms, these
figures, which are known as data index charts, attempt to
compare the experimental output with predicted values
graphically. Usually in experimental papers, there is a slight
difference between the actual values and the modelled values
[42-44]. Figures 1-4 represent the data index for four
different biodiesel properties such as IV, KV, PP, and CP and
each figure is divided into four subfigures that compare the
performance of the network in disparate kernel functions.
Subfigures a, b, ¢, and d represent disparate kernel functions
of GPR, as follows: Exponential, Matern, Squared Expo-
nential, and Rational Quadratic, respectively. Carefully in
these figures, it can be understood that all kernel functions
have a nice cover between experimental and predicted
outputs and have a good prediction. As can be observed, the
estimated and experimental values nicely overlapped which
show the proposed GPR algorithm has great efficiency in the
prediction of disparate properties of biodiesel.

Figures 5-8 indicate the regression plot for each bi
diesel property and each figure compares the performance o
the GPR model among four different GPR kernel functions.
As can be seen in the four figures, the majority of test data
accumulated near y = x line. As can be understood from the
regression plot, increasing in test data accumulation rate
near y = x line resulted in high accuracy in the GPR model.
As mentioned earlier, these charts represent a graphical and
general view, and it generally can be seen that all test data are
near y = x line. Based on these charts, the result of the GPR
model has an acceptable performance in all biodiesel
properties.

In order to acquire a better understanding of regression
charts and more explanations, Tables 1-4 are prepared.
According to Table 1 which is related to KV property, if
consider closely R? field, the test value for the Matern kernel
function is 0.992 which is more appropriate in comparison
with other kernel functions. The RMSE value for this kernel
function is 0.15697. If consider Table 2 carefully, for IV, the
best R? value for test data is 0.998 while the RMSE value is
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Figure 1: Data index graph for train and test data for KV property based on different kernel functions of GPR.
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Figure 2: Data index graph for train and test data for KV property based on different kernel functions of GPR.
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Figure 3: Data index graph for train and test data for KV property based on different kernel functions of GPR.

0.96580 afifjthis belongs to the Squared Exponential kernel
function. As can be seen in Table 3, the best R value in test
data for CP property belongs to exponential function with a
value about 0.966 while Squared Exponential kernel function
for PP property in Table 4 has the best value for R* about
0.968. The RMSE values for CP and PP are 1.38659 and

1.56068, respectively. As can be seen in regression plots
(diagrams 5-8) and the reported data in Tables 1-4, the
fitting line for each property is near y=x line. It can be
guced that the GPR algorithm has appropriate accuracy
or the prediction of biodiesel properties. In order to check
out the proposed model more meticulously with the
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FiGure 4: Data index graph for train and test data for KV property based on different kernel functions of GPR.
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Figure 5: Regression plot for KV property based on different kernel functions of GPR.
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Ficure 6: Regression plot for IV property based on different kernel functions of GPR.
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TasLe 1: The comparison between four kernel functions for KV property from the point of view of statistical quantities.
Model Phase R’ MRE (%) MSE RMSE STD
Train 0.998 2.61001 0.00622 0.07884 0.06408
GPR (Exponential) Test 0.975 4.50131 0.12657 0.35577 0.29305
Total 0.991 3.25054 0.03573 0.35577 0.16650
Train 0.994 1.19836 0.02510 0.15841 0.12080
GPR (Matern) Test 0.992 4.29964 0.02464 0.15697 0.08520
Total 0.993 2.04742 0.02624 0.15697 0.11351
Train 0.993 2.40750 0.01830 0.13529 0.10158
GPR (Squared Exponential) Test 0.981 5.07691 0.13892 037272 0.28103
Total 0.991 2.38574 0.03773 037272 0.16620
Train 0.994 2.77862 0.02566 016019 0.12024
GPR (Rational Quadratic) Test 0.969 6.90077 0.08160 0.28565 0.14865
Total 0.991 3.50671 0.03681 0.28565 0.14139
TasLe 2: The comparison between four kernel functions for IV property from the point of view of statistical quantities.
Model Phase R MRE (%) MSE RMSE STD
Train 1.000 0.23024 0.15939 0.39923 0.29438
GPR (Exponential) Test 0.984 0.96971 3.15731 177688 1.35545
Total 0.998 0.27729 0.79448 1.77688 0.83169
Train 0.999 0.44408 0.44046 0.66367 0.39484
GPR (Matern) Test 0.993 0.83689 3.02336 173878 1.45060
Total 0.997 0.46640 0.98545 1.73878 0.81850
Train 0.997 0.55285 1.18464 1.08841 0.85742
GPR (Squared Exponential) Test 0.998 0.69364 0.93277 0.96580 0.56754
Total 0.997 0.62869 1.22526 0.96580 0.81806
Train 0.996 0.60686 1.30529 1.14249 0.87268
GPR (Rational Quadratic) Test 0.996 0.74534 1.93710 1.39180 1.14923
Total 0.996 0.64906 1.56170 1.39180 0.99212

outcomes of ANFIS and LSSVM models reported in pre-
vious literature [45], Tables 1-4 are prepared as numerical.

Table 5 summarizes R* and RMSE values among three
different models for four biodiesel properties. As it can be
understood from Table 5, the GPR model indicates the best

performance for IV property in comparison with ANFIS
and LSSVM-PSO with a value of about 0.998 in R*> while
for other properties ANFIS and LSSVM show more ap-
propriate performance in terms of the view of R* and

RMSE.
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TasLi 3: The comparison between four kernel functions for CP property from the point of view of statistical quantities.

Model Phase R? MRE (%) MSE RMSE STD
Train 0.967 0.00069 0.00001 0.00247 0.00158
GPR (Exponential) Test 0.966 0.37589 1.92262 1.38659 0.93954
Total 0.955 0.09442 0.48066 1.38659 0.64771
Train 0.999 0.07276 0.06294 0.25089 0.15196
GPR (Matern) Test 0.874 0.62866 7.30808 270335 215533
Total 0.944 0.37087 2.73100 270335 1.30838
Train 0.999 0.04991 0.03376 0.18375 0.12258
GPR (Squared Exponential) Test 0.904 0.79289 9.58471 3.09592 2.24565
Total 0.950 027415 2.50823 3.09592 1.40005
Train 1.000 0.31099 1.38429 117656 0.81684
GPR (Rational Quadratic) Test 0.950 0.69381 5.80117 240856 1.48864
Total 0.990 0.39714 2.40895 240856 1.10468

TasLe 4 The comparison between four kernel functions for PP property from the point of view of statistical quantities.

5

Model Phase R MRE (%) MSE RMSE STD
Train 0.982 0.00056 0.00000 0.00195 0.00124
GPR (Exponential) Test 0.878 0.73386 6.64170 2.57715 173628
Total 0.967 0.17651 1.59401 2.57715 1.18811
Train 0.989 0.21290 0.54286 0.73679 046621
GPR (Matern) Test 0.889 0.55839 2.85624 L69004 0.80875
Total 0.973 0.30712 1.15081 169004 0.68377
Train 1.000 0.26262 0.86125 092803 0.60432
GPR (Squared Exponential) Test 0.968 0.52306 2.43573 1.56068 0.72847
Total 0.966 0.33494 1.33190 1.56068 0.72451
Train 0.984 0.25484 0.73098 0.85497 0.51735
GPR (Rational Quadratic) Test 0.788 0.73120 6.62593 257409 1.78533
Total 0.954 0.31634 190128 257409 1L.09967

TasLe 5: R? and RMSE values for ANFIS, LSSVM-PSO, and GPR
models among different properties.

Testing phase

B10ches?l ANEIS [45] LSSVM-PSO GPR
properties [1]

R* RMSE R* RMSE R* RMSE
KV 0997 008 0998 008 0992 0.15697
v 0998 1.02 09962 1192 0598 096580
CP 0957 154 09998 0.086 0966 1.38659
PP 0996 044 09999 0.031 0968 1.56068
5. Conclusion

this paper, a Gaussian Process Regression model using
our different kernel functions such as Exponential, Matern,
Squared Exponential, and Raal Quadratic was proposed.
This model has the ability to estimate the physical and
chemical features of the biodiesel material where these
properties include KV, PP, CP, and IV. A valuable dataset
was collected from different sources for these biodiesel
properties. On the other hand, the results of offered GPR
model are compared with two previous models, ANFIS and
LSSVM-PSO results. The graphical and statistical ap-
proaches indicated the GPR model obtained high efficiency
in terms of estimation and evaluation of biodiesel properties.
The proposed GPR algorithm is easy to apply and re-
searchers can open an account on this algorithm from the

point of view of simplicity and usefulness. This model can be
helpful for those who desire to work with biodiesel fuels.
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