Inhibition of Skin Cancer using Human Epidermal Keratinocytes (HaCaT) Cells from Siam Weeds (*Chromolaena odorata* L.)

Karlina Amir Tahir¹, Erwin Hafid², Muh. Fitrah¹, Ahmad Lalo³, Nurul Fadilah¹, Syamsuri Syakri¹, Syatirah Jalaluddin¹, Katsuyoshi Matsunami⁴

¹Faculty of Medicine and Health Science, UIN Alauddin Makassar, Makassar, Indonesia.
²Master of Islamic Education Management, UIN Alauddin Makassar, Makassar, Indonesia.
⁴Department of Pharmacognosy, Faculty of Biomedical and Health Science at Hiroshima University, Japan.

Corresponding Author E-mail: karlina.amir@uin-alauddin.ac.id

ABSTRACT:
Cancer can usually develop due to exposure to sunlight. UV radiation from sunlight is known to damage DNA and is bad for the skin. Skin P stem cell carcinogenesis is caused by UV-A rays that penetrate deep into the dermis layer. UV-B damages cell DNA by being absorbed by proteins in the epidermis. *Chromolaena odorata* was extracted using methanol solvent, then partitioned into 5 solutions in the form of n-Hexane, Ethyl Acetate, Acetonitrile, n-Buthanol, and Ethanol. The five extracts obtained were tested with Human Epidermal Keratinocyte cells using the bioassay method. Results obtained from the microplate reader after incubation. Each extract was divided into three concentrations, it is 100, 50, 20(µg/mL). Then in the positive control (Etoposide), it was divided into four concentrations, 100, 50, 20, 10(µg/mL). After being analyzed with the results of the microplate reader, the IC50 of *Chromolaena odorata* was 48% in the ethyl acetate extract with a concentration of 100µg/mL. HaCaT cell proliferation was determined at indicated intervals using the MTT colorimetric assay. This assay was based on the ability of live cell succinate dehydrogenase to reduce the yellow salt MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (Sigma-Aldrich, St. Louis, MO, USA) to insoluble purple-blue formazan precipitate. Experiments were carried out on 96-well plates containing a final volume of 100µl of medium/well.

KEYWORDS: *Chromolaena odorata* L, Skin Cancer, HaCaT cell line.

INTRODUCTION:
One of the most common types of cancer in the world is skin cancer, which is characterized by the breakdown of the airtight topical barrier. According to the World Health Organization (WHO), skin cancer is a cancer that often occurs in one in three cancer diagnoses, and the application of local treatment for this disease is experiencing increasing development¹. Based on the classification, skin cancer consists of melanoma and non-melanoma skin cancer which includes basal cell carcinoma and squamous cell carcinoma².

Cancer generally develops due to DNA damage that our body cannot repair. Uncontrolled, these injured cells begin to grow and divide. When these changes occur in the skin, they can cause skin cancer. The proliferation of damaged cells can cause tumors².

Skin cancer can arise in any of the skin's layers. Different skin types have differing propensities to develop skin cancer. The frequency varies according to the kind and color of the skin. Furthermore, genetics plays a role in the development of skin cancer. Melanoma is the most common hereditary kind of cancer².

The symptoms that appear can be used to diagnose skin cancer. Identify and detect the drugs and therapies used early. In other forms of cancer, the appearance of symptoms occurs in the advanced stages of the disease.
On any part of the body exposed to sunlight, basal cell carcinoma manifests as a lump on the skin. On the hands, face, neck, and other exposed areas of the body, they may appear as white or brown bumps. Melanoma can cause unusual developments on the body, especially on existing moles, while squamous cell carcinoma can manifest as lumps and ulcerated patches on the skin. This can happen anywhere in our bodies.

According to data from the American Cancer Society (ACS), 9,730 persons lost their lives to melanoma in 2017 and there were 87,110 newly diagnosed melanomas. Melanin granules, which are produced in melanocytes and transported to keratinocytes, accumulate and result in skin pigmentation. When exposed to UV radiation, keratinocytes release cytokines and chemokines that influence the formation of melanin. Skin pigmentation abnormalities can cause melanoma to grow on any area of the skin, although in men and women it most commonly affects the trunk and legs.

One of the biggest factors that causes cancer to develop is excessive exposure to sunlight. It is known that UV radiation from sunlight can injure the skin and cause DNA to be damaged. These dangerous genetic changes occur before the body has time to recover, causing permanent damage. Apart from that, cancer can also be caused by environmental factors and the patient’s genetic background.

UV radiation is divided into UV-A and UV-B photons. Although UV-B is considered more dangerous, UV-A can also have negative consequences. Skin P stem cell carcinogenesis is caused by UV-A rays that penetrate deep into the dermis. By producing free radicals and damaging cell membranes, UV-A can also damage DNA, which can lead to skin cancer. UV-B damages cell DNA by being absorbed by proteins in the epidermis. Skin exposed to UV-B rays also experiences oxidative damage. The cell cycle is further disrupted by UV-B radiation interference with growth factors, transcription factors, anti-apoptotic relational proteins, pro-apoptotic proteins, inflammatory enzymes, and regulatory proteins. It also causes mutations in a number of oncogenes and tumor suppressor genes. This can lead to uncontrolled keratinocyte mitosis and initiation of skin cancer upon exposure to UV light.

Although cancer cannot be completely eradicated, there are steps you can take to reduce the risk. The actions that must be taken are minimizing exposure to sunlight, not using tobacco, using sunscreen to protect the skin from UV radiation, and removing skin cancer cells through biopsy.

The people of South Sulawesi have empirically used Laruna leaves as traditional medicine. *Chromolaena odorata* (L) has long been used in traditional West African, Asian and Indonesian medicine for wound healing, antibacterial, antimalarial, anti-inflammatory, antioxidant, antiimmunosuppressive and anticancer, as well as other uses.

The benefits of raw medicines are related to plant phytochemicals, which include phenolic compounds, carotenoids, antioxidant vitamins, terpenoids, steroids, indole, fiber, etc. The beneficial components thought to be responsible for lowering the risk of cancer are crude drugs.

The bioactive compounds found in Chromolaena odorata have important therapeutic benefits in a number of clinical disorders. *Odoratin*, Persicogenin, Acacetin, Ombuin, 5,7-Dihydroxy-6,40-dimethoxyflavanone, Erio-dictyol-7,30,40-trimethyl ether, Alyssifolinone, Aromadendrin-7-dimethyl ether, Dihydrokaempferide, Apigenin-7,40- dimethyl ether, Isosakuranetin, Sakuranetin, Sakuranetin-40-methyl ether, Aromadendrin-7,40-dimethyl ether.

MATERIALS AND METHODS:

Materials:

Chromolaena odorata collection is in Pangkep regency, and the following ingredients were used: The HacaT cell, Dulbecco’s Modified Eagle’s Media, dimethyl sulfoxide (DMSO), etoposide, MTT, the 96-well plates, Solvents for the extraction line, obtained from the faculty of Biomedical and Health at Hiroshima University, Japan.

Methods:

This is a quantitative laboratory experimental study with a pure experimental research design (True Experimental); post test only control design. This study was carried out in Department of Pharmacognosy at Hiroshima University in Japan.

Extractions:

Chromolaena odorata extract was dissolved in methanol to obtain a thick methanol extract. Then partitioned into solid liquid using n-Hexane, Ethyl Acetate, Acetonitrile, N-Buthanol, Ethanol.

Table 1: Extraction weight of Chromolaena odorata

<table>
<thead>
<tr>
<th>Sample</th>
<th>Solvent</th>
<th>Extract Weight (gr)</th>
<th>% Rendamen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromolaena odorata 5 kg</td>
<td>Metanol</td>
<td>77.621</td>
<td>1.55</td>
</tr>
</tbody>
</table>

1952
Table 2: Partition weight of *Chromolaena odorata*

<table>
<thead>
<tr>
<th>Sample</th>
<th>Solvent</th>
<th>Extract Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol extract of Chromolaena odorata</td>
<td>n-Hexane</td>
<td>68.45</td>
</tr>
<tr>
<td></td>
<td>Ethyl Acetate</td>
<td>245.89</td>
</tr>
<tr>
<td></td>
<td>Acetonitrile</td>
<td>85.22</td>
</tr>
<tr>
<td></td>
<td>n-Buthanol</td>
<td>147.97</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>53.22</td>
</tr>
</tbody>
</table>

Cell Culture:
Preparation of the Stock Solutions and the Serial Concentrations To make the initial stock solution (10 mg/mL) of *Chromolaena odorata* samples, 10mg of each of extract were dissolved in 1mL of DMSO. The second stock solution (5mg/mL) was generated by mixing 0.5mL of this stock solution with 0.5mL of DMSO, which was mixed well. The third stock solution (2mg/mL) was mixed by 0.2mL of DMSO. To make the final serial concentrations, 1µL aliquots of the sample stock solutions in two-fold dilution (10, 5, 2mg/mL) were added to the corresponding well (the final volume became 100µL) to obtain the final concentrations (100, 50, 20µg/mL).

Cytotoxicity Investigation:
The colorimetric cell viability MTT assay was used to determine the cytotoxicity against the Human epidermal keratinocytes (HaCaT) cells. DMSO was used as a negative control, and etoposide as a positive control. A total of 1µL of each etoposide stock solution was added to the corresponding wells of a 96 microplate, resulting in final serial concentrations (100, 50, 20µg/mL).

RESULTS:
The results of the cytotoxic test are useful for knowing how much the cytotoxic effect and anticancer potential of *Chromolaena odorata* extract. The results are determined by calculating the IC50 value, the concentration value capable of suppressing the growth of 50% of the cancer cell population based on MTT test ([(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)]).

The result of determining the percentage inhibition of the extracts as shown in the graph. The ethyl acetate extract was the most active, with an IC value of 48%, with a concentration of 100µg/mL.

DISSERTATION:
This research aims to identify the potential of natural ingredients by using HaCaT cells as a reliable in vitro model for evaluation.

The main cells of the human epidermis are called keratinocytes. Apart from their role in maintaining the...
epidermal barrier, keratinocytes also have a role in the inflammatory response of the skin17 and the re-epithelialization stage of wound healing18. Establishment of an immortalized human keratinocyte cell line (HaCaT) addresses the problems observed with primary keratinocytes in the form of their need for growth supplementation, culture differentiation, donor-related variability, and limited lifespan. Many skin model investigations have included HaCaT cells without compromising keratinocyte function, cellular response, or differentiation potential19. There are many uses for monolayer culture of HaCaT cells, including analysis of in vitro wound healing and cellular toxicity. However, the actual structure of the epidermis cannot be completely replicated by monolayer culture methods. On the other hand, keratinocyte cell cultures that provide an air-liquid interface can produce a more accurate representation of the epidermis20.

In the process of repairing the epidermis and maintaining the skin's immune defenses, keratinocytes have an active role by secreting growth factors, cytokines, and chemokines. For in vitro standardization studies, investigate the use of HaCaT cells as a suitable model to follow the release of inflammatory mediators and skin repair in response to TNF\textalpha or IL-1\beta21, as well as their association with different culture states and different degrees of differentiation17.

The human line HaCaT cells are long-lived and spontaneously immortalized. They possess basal cell characteristics and respond significantly to two well-known in vitro prodifferentiating agents: increasing cell density and culture duration17.

HaCaT cell proliferation was determined at indicated intervals using the MTT colorimetric assay. This assay was based on the ability of live cell succinate dehydrogenase to reduce the yellow salt MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide)) (Sigma-Aldrich, St. Louis, MO, USA) to insoluble purple-blue formazan precipitate. Experiments were carried out on 96-well plates containing a final volume of 100 µl of medium/well17.

The standard DMEM supplemented with 10% FBS, both of which contain enough calcium to trigger differentiation, was used to sustain HaCaT cells. It takes longer to dedifferentiate to the basal phenotype in low-calcium medium22.

According to statistical data, melanoma is the main cause of death due to skin cancer. Further research revealed that a patient's chances of survival depended on the stage of the cancer. Early detection and treatment of melanoma can increase the chances of recovery23.

Topical medications are absorbed through the skin and pass through the skin layers to enter the systemic circulation. There are several topical agents that are often used including several corticosteroids, namely 5-fluouracil (5-FU, Efudex), Imiquimod, Resiquimod, Ingenol, Mebutate, Diclofenac, Retinoid, Mechlorethamine, Carmustine, Bexarotene, Tazarotene photodynamic24,25.

Plant phytochemicals, such as antioxidants, are thought to have beneficial effects over crude drugs. Chromolaena odorata leaf extract contains many antioxidants, flavonoids, phenolics, terpenoids26. In addition, the results of the investigation show that the anti-mitotic activity of green silver nanoparticles made from Chromolaena odorata has a potential effect on cell division27. The phytochemical profile of the phenolic extract of Chromolaena odorata has great potential in the discovery of new compounds with pharmacotherapeutic value28. Research on Chromolaena odorata ethyl acetate extract at a concentration of 100µg/mL had the highest percentage, namely 48%. Meanwhile, Helicteres isora extract at a concentration of 300µg/ml has activity equivalent to the standard drug doxorubicin29.

Additionally, when performing skin cancer testing using extracts such as ethosomal gel, which results in controlled release of curcumin, curcumin also has a longer half-life and maximum deposition in the deeper layers of the skin. Thus, it is able to completely eliminate melanoma cells30. In addition, due to its pharmacological and therapeutic qualities, diosmin has the potential to be a flavonoid in the treatment of hepatocellular carcinoma, both in vivo and in vitro, in addition to its carcinogenic anticancer potential. Even so, further research into various types of cancer is still needed31.

In-depth studies of melanoma biology have had an influence on the consideration of melanoma as a therapy for one of the most resistant malignancies. There have been several options for treating metastatic melanoma in the last 30 years, so more extensive clinical studies have been conducted. These studies show that combination regimens, hormonal therapy, immunotherapy, single and combination agent chemotherapy, biochemotherapy, and targeted agent therapy do not always provide the best results23.

CONCLUSION:
Based on cytotoxicity tests, Chromolaena odorata ethyl acetate extract has anti-skin cancer potential.

CONFLICT OF INTEREST:
There are no conflicts of interest declared by the authors of this study.