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Abstract. We start by defining the short-time fractional Fourier transform in this

paper, which is a natural generalization of the fractional Fourier transform. We then
investigate its essential properties and explore an uncertainty principle related to this

proposed transformation.

Keywords: Fractional Fourier transform, short-time fractional Fourier transform, uncer-

tainty principle

1. Introduction

It is well known that the fractional Fourier transform (FrFT) is a generalized of the

usual Fourier transform (FT), has several applications in optics, signal processing,

and quantum mechanics [1,2,3,4,5,6,7]. The fractional Fourier transform depends

on a parameter ϑ and can be considered as a counterclockwise rotation of the

function to arbitrary angles in the spatial frequency domain. Since the FrFT is an

extension of the FT, we may transfer some properties of the FT to the FrFT domain

like shifting, scaling, modulation, convolution, and inequalities with some changes

[8,9,10].

On the other hand, the fractional Fourier domain-frequency contents, which are

needed in some applications, are not found by FrFt. This problem can be solved

using short-time fractional Fourier transform (STFrFT) [11]. A crucial timefre-

quency analysis tool is the STFrFT [12]. It has been extensively applied in numerous

signal processing domains including speech and acoustics.

The uncertainty principle (UP) is a key concept in signal processing and quan-

tum mechanics. In many changes, one of the well-liked outcomes is likewise the un-

certainty principle. A number of works, including [13,14], have recently addressed

∗Corresponding author
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Essential Properties Related to Short-Time Fractional Fourier Transform 317

the uncertainty principles associated with the conventional short-time Fourier trans-

form. The STFrFT, which may be thought of as one rotation of the conventional

short-time Fourier transform, was proposed by the authors in [15]. The authors of

[16] conclude that there is a connection between the FrFT parameter and the uncer-

tainty principle for the STFrFT by reducing a fundamental inequality. Nevertheless,

there are currently no publications that include the crucial characteristics and un-

derlying principles of uncertainty for the short-time fractional Fourier transform

(STFrFT).

This paper’s remaining sections are arranged as follows. The fundamentals of

the fractional Fourier transform (FrFT) are presented in Section 2, along with a

summary of several results that are crucial to understanding the conclusions drawn

in this work. The definition of the short-time fractional Fourier transform (STFrFT)

is presented in Section 3. This section also includes the derivation of certain funda-

mental properties, such as Moyal’s and the inversion formula. The attributes will

yield significant benefits for the advancement of our primary findings. We also in-

vestigate a principle of uncertainty associated with this suggested transformation.

Lastly, we present our conclusion in Section 4.

2. Basic Facts on Fractional Fourier Transform

In this part, we mainly review the basic notations on the fractional Fourier transform

(FrFT). We start with the well known definition below.

For 1 ≤ p ≤ ∞, we use the notation Ls(R) to represent the space of measurable

functions on real numbers R with norm:

‖h‖Ls(R) =

(∫
R
|h(x)|s dt

)1/s

<∞, 1 ≤ s <∞. (2.1)

In particular, when s =∞ we obtain L∞(R)-norm:

‖h‖L∞(R) = ess sup
x∈R
|h(x)|. (2.2)

Especially, if h ∈ L∞(R) is continuous then:

‖h‖L∞(R) = sup
x∈R
|h(x)|. (2.3)

The usual inner product of L2(R) is then defined as:

〈h, φ〉L2(R) =

∫
R
h(x)φ(x) dx. (2.4)

where φ(x) is complex conjugate of φ(x).

We remind that the Fourier transform of a function h ∈ L2 (R) is defined by:

F {h} (ψ) =
1√
2π

∫
R
h (ψ) e−ixψdx. (2.5)

Definition 2.1. For any function h ∈ L2(R), the fractional Fourier transform

(FrFT) with parameter ϑ is described by the formula

Fϑ{h}(ψ) =

∫
R
h(x)Kϑ(ψ, x) dx, (2.6)

2
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318 Sulasteri, et al.

where the kernel transform Kϑ(ψ, x) is defined by:

Kϑ(ψ, x) =


Cϑe

i(|x|2+|ψ|2) cotϑ
2 −it·ψ cscϑ, ϑ 6= nπ,

δ(x− ψ), ϑ = 2nπ,

δ(x+ ψ), ϑ = (2n+ 1)π, n ∈ Z,
(2.7)

for δ is Dirac delta function. Here

Cϑ =

√
1− i cotϑ

2π
, Cϑ =

√
1 + i cotϑ

2π
, (2.8)

and it is evident that:

|Cϑ| =
1√

2π sinϑ
. (2.9)

It is straightforward to verify that the FrFT kernel fulfills the following basic

properties.

Kϑ(ψ, x) = K−ϑ(ψ, x), (2.10)

and ∫
R
Kϑ(ψ, x)Kϑ(ψ′, t) dt = δ(ψ − ψ′), (2.11)

where Kϑ(ψ, x) is the complex conjugate of Kϑ(ψ, x).

Definition 2.2. For any function h ∈ L2(R) with Fϑ{h} ∈ L2(R). The inversion

formula of the fractional Fourier transform (FrFT) of the function h is described

as:

h(x) = F−1ϑ
[
Fϑ{h}

]
(x),

=

∫
R
Fϑ{h}(ψ)Kϑ(ψ, x) dψ,

=

∫
R
Fϑ{h}(ψ)Cϑe

−i(|x|2+|ψ|2) cotϑ
2 +ix·ψ cscϑ dψ. (2.12)

Equation (2.12) tell us to recover the original function from its FrFT.

Lemma 2.3 (FrFT Parseval [17]). For two functions h, φ ∈ L2 (R), it holds

〈h, φ〉L2(R) = 〈Fϑ {h} ,Fϑ {φ}〉L2(R) , (2.13)

and

‖h‖2L2(R) = ‖Fϑ {h}‖2L2(R) . (2.14)

3. Short-Time Fractional Fourier Transform and Its Essential

Properties

This part begins by defining the short-time fractional Fourier transform (STFrFT)

which is a generalized of the classical fractional Fourier transform. We then collect

its important properties which will be needed later.

1

2
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Essential Properties Related to Short-Time Fractional Fourier Transform 319

Definition 3.1. For any function φ ∈ L∞(R) and h ∈ L2(R), the short-time

fractional Fourier transform (STFrFT) with respect to φ is described by

ST Fϑφ{h}(t, ψ) = Cϑ

∫
R
h(x)φ(x− t)ei

((
x2+ψ2

2

)
cotϑ−ixψ cscϑ

)
dx

=

∫
R
h(x)φ(x− t)Kϑ(x, ψ)dx. (3.1)

For a fixed t, equation (3.1) may be expressed in the form

ST Fϑφ{h}(t, ψ) = Fϑ{Ǎf,φ}(ψ), (3.2)

where

Ǎf,φ(x, t) = h(x)φ(x− t). (3.3)

Remark 3.2. It should be observed that when ϑ =
π

2
, equation (3.1) becomes:

ST Fϑφ{h}(t, ψ) =
1√
2π

∫
R
Ǎh,φ(x, t)e−ixψdx

= Fϑ{Ǎh,φ}(ψ). (3.4)

The fundamental relationship of the STFrFT with classical FT is given by:

C−1ϑ ST F
ϑ
φ{h}(t, ψ)e−iψ

2 cotϑ
2 =

∫
R
Ǎϑ
h,φ

(x, t)e−ixψ cscϑdx

= F
{
Ǎϑ
h,φ

(x, t)
}

(ψ cscϑ), (3.5)

where

Ǎϑh,φ(x, t) = h(x)φ(x− t)e it
2 cotϑ

2 . (3.6)

Some of the essential properties of the STFrFT are collected in the following

theorems.

Theorem 3.3 (Moyal’s formula). Let h, φ ∈ L2(R), we have:∫
R

∫
R

∣∣∣ST Fϑφ{h}(t, ψ)
∣∣∣2 dψdt = ‖f‖2L2(R)‖φ‖

2
L2(R). (3.7)

Proof. In view of Parseval’s formula for the FrFT in equation (2.14) and relation

(3.4), we have:∫
R

∣∣∣ST Fϑφ{h}(t, ψ)
∣∣∣2 dψ, =

∫
R

∣∣F {Ǎh,φ} (ψ)
∣∣2 dψ,

=

∫
R

∣∣Ǎh,φ(ψ)
∣∣2 dx,

=

∫
R
Ǎh,φ(ψ)Ǎh,φ(ψ)dψ,

=

∫
R
h(x)φ(x− t)h(x)φ(x− t)dx,

=

∫
R
h(x)h(x)φ(x− t)φ(x− t)dx. (3.8)

8
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320 Sulasteri, et al.

We integrate the both sides of equtaion (3.8) with respect to dt and get:∫
R

∫
R

∣∣∣ST Fϑφ{h}(t, ψ)
∣∣∣2 dψdt, =

∫
R

∫
R
h(x)h(x)φ(x− t)φ(x− t)dxdt. (3.9)

Performing the change of variables x− t = u, we infer that:∫
R

∫
R

∣∣∣ST Fϑφ{h}(t, ψ)
∣∣∣2 dψdt =

∫
R

∫
R
h(x)h(x)φ(u)φ(u)dxdu. (3.10)

Using Fubini’s theorem on the right side of equation (3.10), we further get:∫
R

∫
R

∣∣∣ST Fϑφ{h}(t, ψ)
∣∣∣2 dψdt =

∫
R
|h(x)|2dx

∫
R
|φ(u)|2du, (3.11)

or, ∫
R

∫
R

∣∣∣ST Fϑφ{h}(t, ψ)
∣∣∣2 dψdt = ‖h‖2L2(R)‖φ‖

2
L2(R), (3.12)

which completes the proof.

Theorem 3.4 (Inversion formula). Let h, φ ∈ L2(R), then inversion formula of

the STFrFT is given by:

h(x) =
1

φ(0)

∫
R
ST Fϑφ{h}(t, ψ)K−ϑ(x, ψ)dx. (3.13)

Proof. It follows with relation (3.1) that:

ST Fϑφ{h}(t, ψ) = Cϑ

∫
R
h(x)φ(x− t)ei

((
x2+ψ2

2

)
cotϑ−ixψ cscϑ

)
dx

=

∫
R
Ǎf,φ(x, t)Kϑ(x, ψ)dx, (3.14)

where Ǎf,φ(x, t) is defined by equation (3.3). Using inversion of FrFT in (2.12),

then:

Ǎf,φ(x, t) =

∫
R
ST Fϑφ{h}(t, ψ)K−ϑ(x, ψ)dx. (3.15)

Equation equation (3.15) above can be rewritten in the form:

h(x)φ(x− t) =

∫
R
ST Fϑφ{h}(t, ψ)K−ϑ(x, ψ)dx. (3.16)

Choosing x = t in equation (3.16), we obtain

h(x)φ(0) =

∫
R
ST Fϑφ{h}(t, ψ)K−ϑ(x, ψ)dx. (3.17)

It means that

h(x) =
1

φ(0)

∫
R
ST Fϑφ{h}(t, ψ)K−ϑ(x, ψ)dx.

Thus, the desired result is obtained.

4
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Essential Properties Related to Short-Time Fractional Fourier Transform 321

Next, we will build Sharp Housdorff-Young inequality for the short-time frac-

tional Fourier transform (STFrFT), which generalizes Sharp Hausdorff-Young in-

equality for the FT in StFrFT domains.

Theorem 3.5. Let p(1 ≤ r ≤ 2) and q such that 1
p + 1

q = 1, then for any h, φ ∈
Lp
(
R
)
, we have:∥∥∥ST Fϑφ{h}(t, ψ)

∥∥∥
Lq(R×R)

≤ | sinϑ|
1
q−

1
2 p

1
2p

√
2πq

1
2q

‖h‖Lp(R)‖φ‖Lp(R). (3.18)

Proof. With aid of Sharp Housdorff-Young inequality for the FT, we find that:(∫
R
|F{h(x)}(ψ)|qdψ

) 1
q

≤ p
1
2p

q
1
2q

(∫
R
|h(x)|pdx

) 1
p

. (3.19)

We replace h(x) by Ǎϑh,φ(x, t) by (3.6) into both sides of equation (3.19) above, we

get: (∫
R
|F{Ǎϑh,φ}(ψ)|qdψ

) 1
q

≤ p
1
2p

q
1
2q

(∫
R
|Ǎϑh,φ(x, t)|pdx

) 1
p

. (3.20)

We set ψ = ψ cscϑ in equation (3.20) above, we obtain that:(∫
R
|F{Ǎϑh,φ}(ψ cscϑ)|qd(ψ cscϑ)

) 1
q

≤ p
1
2p

q
1
2q

(∫
R
|Ǎϑh,φ(x, t)|pdx

) 1
p

. (3.21)

Applying (3.5) to left hand side of eqution (3.21), we find:(
(2π)

q
2 | sinϑ|

q
2−1

∫
R

∣∣∣ST Fϑφ{h}(t, ψ)
∣∣∣q dψ) 1

q

≤ p
1
2p

q
1
2q

(∫
R
|h(x)φ(x− t)|pdx

) 1
p

.

(3.22)

Hence,(∫
R

∣∣∣ST Fϑφ{h}(t, ψ)
∣∣∣q dψ) 1

q

≤ | sinϑ|
1
q−

1
2 p

1
2p

√
2πq

1
2q

(∫
R
|h(x)|p|φ(x− t)|pdx

) 1
p

,

(3.23)

and∫
R

∣∣∣ST Fϑφ{h}(t, ψ)
∣∣∣q dψ ≤ ( | sinϑ| 1q− 1

2 p
1
2p

√
2πq

1
2q

)q (∫
R
|h(x)|p|φ(x− t)|pdx

) q
p

.

(3.24)

Integrating both sides equation (3.24) with respect to dt we get:∫
R

∫
R

∣∣∣ST Fϑφ{h}(t, ψ)
∣∣∣q dψdt ≤ ( | sinϑ| 1q− 1

2 p
1
2p

√
2πq

1
2q

)q (∫
R

∫
R
|h(x)|p|φ(x− t)|pdxdt

) q
p

.

(3.25)
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Equation (3.25) may be expressed as:(∫
R

∫
R

∣∣∣ST Fϑφ{h}(t, ψ)
∣∣∣q dψdt) 1

q

≤ | sinϑ|
1
q−

1
2 p

1
2p

√
2πq

1
2q

(∫
R
|h(x)|pdx

∫
R
|φ(x− t)|pdt

) 1
p

=
| sinϑ|

1
q−

1
2 p

1
2p

√
2πq

1
2q

‖f‖Lp(R)‖φ‖Lp(R). (3.26)

The above equation is the same as:∥∥∥ST Fϑφ{h}(t, ψ)
∥∥∥
Lq(R×R)

≤ | sinϑ|
1
q−

1
2 p

1
2p

√
2πq

1
2q

‖h‖Lp(R)‖φ‖Lp(R).

We obtained the desired result.

4. Conclusion

In this paper, we have introduced the short-time fractional Fourier transform

(STFrFT) and investigated its essential properties. We have investigated Sharp

Housdorff-Young inequality related to this transformation by applying several rela-

tions and properties that have been obtained for the proposed transformation.
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