PENGARUH UKURAN JENDELA TERHADAP INTENSITAS PENCAHAYAAN PADA RUANG

Diajukan untuk Memenuhi Salah Satu Syarat untuk Meraih Gelar Sarjana Sains

Jurusan Fisika pada Fakultas Sains dan Teknologi

Universitas Islam Negeri (UIN) Alauddin Makassar

UNIVERSITAS ISLAM NEGERI

ALAIOleh: DIN MAKASSAR

MIFTAHUL JANA 60400112020

FAKULTAS SAINS DAN TEKNOLOGI UIN ALAUDDIN MAKASSAR 2017

PERNYATAAN KEASLIAN SKRIPSI

Dengan penuh kesadaran, penyusun yang bertanda tangan di bawah ini menyatakan bahwa skripsi ini benar adalah hasil karya penyusun sendiri. Jika dikemudian hari terbukti bahwa ia merupakan duplikat, tiruan, plagiat, atau dibuat oleh orang lain, sebagian atau seluruhnya, maka skripsi dan gelar yang diperoleh karenanya batal demi hukum.

PENGESAHAN SKRIPSI

Skripsi yang berjudul, "Pengaruh Ukuran Jendela Terhadap Intensitas Pencahayaan Ruang" yang disusun oleh Miftahul Jana, NIM: 60400112020, mahasiswa jurusan Fisika pada Fakultas Sains dan Teknologi UIN Alauddin Makassar, telah diuji dan dipertahankan dalam sidang Munaqasyah yang diselenggarakan pada hari Rabu, tanggal 16 Agustus 2017, dinyatakan telah dapat diterima sebagai salah satu syarat untuk meraih gelar sarjana dalam ilmu Sains dan Teknologi, jurusan Fisika (dengan beberapa perbaikan).

Makassar, 28 Agustus 2017 M 06 Dzulhijjah 1438 H

DEWAN PENGUJI

MAKASSAR

Ketua : Prof. Dr. Arifuddin Ahmad, M.Ag.

Sekretaris : Ihsan, S.Pd., M.Si.

Munaqisy I : Rahmaniah, S.Si., M.Si.

Munaqisy II : Sri Zelviani, S.Si., M.Sc

Munaqisy III : Dr. H. Aan Parhani, Lc., M.Ag.

Pembimbing I : Hernawati, S.Pd., M. Pfis.

Pembimbing II: Iswadi, S.Pd., M.Si.

Diketahui Oleh:

Dekan Fakultas Sains dan

Teknologi UIN Alauddin Makassar

Prof. Dr. Avifuddin Ahmad, M.A.

KATA PENGANTAR

Segala puji bagi Allah yang menguasai semesta alam, yang berkuasa terhadap yang hidup dan yang mati serta menunjukkan jalan kepada mereka untuk selalu kembali pada-Nya. Alhamdulillah atas limpahan Rahmat dan Karunia-Nya kepada penulis sehingga penyusunan skripsi ini bisa diselesaikan. Salawat dan salam semoga senantiasa tercurahkan kepada baginda Rasulullah Muhammad saw. manusia yang memimpin dengan akhlaq paling mulia, dan membawa ummat manusia dari jaman kebodohan menuju jaman kecerdasan.

INTENSITAS PENCAHAYAAN PADA RUANG" merupakan salah satu usaha untuk memenuhi salah satu syarat penting kelulusan mahasiswa strata satu Program Studi Fisika Universitas Islam Negeri (UIN) Alauddin Makassar. Penulis menyampaikan terimah kasih yang terkhusus, dan setulus-tulusnya kepada Ayahanda (alm) H.Maman dan Ibunda tercinta (almh) Hj. Misbah atas kasih sayangnya selama membesarkan penulis semoga Allah menempatkan mereka pada sisi-Nya amiin dan kasa kasih sayangnya selama tak lupa kepada mereka saudara dan saudariku yang selalu memberi motivasi moril dan materi selama penulis menempuh pendidikan semoga Allah membalas kebaikan-kebaikan kalian aamiin.

Selama menyelesaikan skripsi ini, penulis telah banyak memperoleh bimbingan dan bantuan dari berbagai pihak untuk itu pada kesempatan ini, penulis mengucapkan terima kasih yang sebesar-besarnya kepada:

- Bapak Prof. Dr. Musafir Pababbari, M.Si sebagai Rektor Universitas Islam
 Negeri Alauddin Makassar.
- Bapak Prof. Dr. Arifuddin Ahmad, M.Ag sebagai Dekan Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar.
- 3. Ibu Sahara, S.Si, M.Sc, Ph.D sebagai Ketua Jurusan Fisika dan Bapak Ihsan, S.Si., M.Si sebagai Sekertaris jurusan Fisika sekaligus penasehat akademik penulis.
- 4. Ibu Hernawati, S.Pd., M.Pfis selaku Pembimbing I dan Bapak Iswadi, S.Pd, M.Si selaku Pembimbing II yang telah maksimal meluangkan waktu untuk memberikan pengarahan, dorongan dan kesabaran dalam penyusunan skripsi selama ini.
- 5. Ibu Rahmaniah, S.Si., M.Si, ibu Sri Zelviani, S.Si., M.Sc dan Bapak Dr. H. Aan Parhani, Lc., M.Ag. sebagai tim penguji.
- 6. Seluruh Bapak/Ibu dosen dan seluruh staf serta sejajarannya yang berada dalam lingkungan Fakultas Sains dan Teknologi UIN alauddin makassar yang telah membantu kelancaran penulis selama menempuh studi.
- 7. Para Laboran Fisika yang telah memberikan saran dan bantuan dalam pelaksanaan penelitian skripsi.

- 8. Keluarga di Makassar bapak Syarifuddin S.Ag dan ibu Aminah S.Ag.,M.Pd beserta putrinya Fadilah nurul inayah yang memberikan bantuan penulis selama menempuh studi.
- 9. K' Muslimin, k'Mujiyono, k'Tarmijin dan d'Nurul mawar dani serta ponakan zulkifli dan fathurrizki saputra, beserta Keluarga besar di Desa Rompo yang selalu memberikan dorongan, dukungan serta do'a, sehingga penulis dapat menyelesaikan skripsi ini.
- 10. K' Dian Astriani, k' Rahmah Hasan, k'Aifa dan seluruh akhwat yang ada di Forum Studi Raudatunnisa (FSRN) UIN Alauddin Makassar yang telah memberikan banyak ilmu, nasehat, semangat dan bimbingan selama ini.
- 11. Teman Teman Lembaga Kajian An-Nuur (LK AN-NUUR), dan Seluruh akhwat Studi Club (Sc) dibawah naungan Mahasiswa Pencinta Masjid (MPM) yang ada di fakultas masing-masing, yang selama ini memberikan pengalaman dan bantuan selama penulis menempuh studi.
- 12. Sahabat-sahabatku Andriani, S.Farm, Fathurismah, S.Si, Karlina, S.Si, Megawati, Muslimah, Miskul iman S.Farm, Siti Jaenab., S.Pd, Sriwati., S.Pd, d'irma, d'isra dan banyak lagi terimakasih atas kebersamaannya, atas motivasi, dorongan, semangat dan bantuan selama ini.
- 13. Adik-adik di Pondok Azzahrah Ita, Nilam, Jian, Sumarti, dan banyak yang lainnya yang tak sempat disebut namanya terima kasih atas kebersamaan dan perjuangannnya di semester akhir ini. Terkhusus ibu posko ibu dg. Kuasa dan bapak kepala desa KR.Nompo (Alm) terima kasih sudah menjadi orang tua penulis

selama KKN dan rekan penulis **KKN Reguler angkatan 51 tahun 2016** Desa Baraya Kec. Bontoramba Kab. Jeneponto (Arif, Eni, Mu'as bin jabal dan Rahmaningsih) terima kasih atas kebersamaan dan berbagi pengalamannya.

- 14. Teman-teman Radiasi angkatan 012 terima kasih untuk kebersamaan selama ini.
- 15. Semua pihak yang tidak dapat penulis sebutkan satu-persatu yang telah memberikan motivasi, saran dan telah membantu kelancaran dalam penyusunan skripsi ini.

Segala bentuk saran dan kritik yang bersifat membangun sangat diharapkan penulis untuk perbaikan skripsi ini. Seuntai kata terima kasih atas bantuan dari berbagai pihak adalah satu-satunya ungkapan terindah yang dapat penulis sampaikan.

Semoga isi dari skripsi ini, dapat bermanfaat bagi sesama dan berguna bagi semesta, Amiin.

Wassalamu Alaikum Warahmatullahi Wabarakatuh

Samata, 28 Agustus 2017

UNIVERSITAS ISLAM NEGERI

MAKASSAR

DAFTAR ISI

PERNY PENGE KATA I ABSTR DAFTA DAFTA	ATAAN KEASLIAN SKRIPSI SAHAN SKRIPSI PENGANTAR AK R ISI R GAMBAR	iiiv-viiviiiviiiix-xi
	R TABELR GRAFIK	
BAB I.	PENDAHULUAN	1
	A. Latar Belakang	
	B. Rumusan Masalah	3
	C. Tujuan Penelitian	
	D. Ruan Lingkup	3
	E. Manfaat Penelitian	4
BAB II.	TINJAUAN PUSTAKA	5
	A. JendelaUNIVERSITAS ISLAM NEGERI	5
	1. Pengertian Jendela	5
	2. Fungsi Jendela	
	3. Bentuk-bentuk Jendela	10
	4. Ukuran Jendela	13
	B. Intensitas Pencahayaan	16
	1. Cahaya	16
	2. Prinsip Perjalanan Cahaya	18
	C. Standar Pencahayaan	21

D. Kaca	23
E. Lux Meter	26
BAB III. METODE PENELITIAN	31
A. Waktu dan Tempat	31
B. Alat dan Bahan	31
C. Metode Pengambilan Data	32
D. Analis Data	33
E. Diagram Alir	34
BAB IV. HASIL DAN PEMBAHASAN	35
A. Hasil Penelitian	33
1. Kaca Bening	34
a. Ukuran jendela	34
b. Arah Jendela	38
2. Kaca Hitam	40
a. Ukuran jendela	
b. Arah Jendela	
BAB V.PENUTUP	45
A. Kesimpulan	45
B. Saran	45
DAFTAR PUSTAKA	46

LAMPIRAN-LAMPIRAN	47
Lampiran 1 : Data Hasil Penelitian	48
Lampiran 2 : Dokumentasi Foto	50
Lampiran 3 : Dokumentasi Surat-surat	52
BIOGRAFI	54

DAFTAR GAMBAR

Gambar		Halaman	
II.1 Jendela		5	
II.2 Macam-Macam Jende	ela	11	
II.3 Jendela Casement dan	n Jendela <i>Pivot</i> SS	11	
II.4 Jendela katup dan Jer	ndela ayun	14	
II.5 Sketsa Proses Penera	ngan Alami ke dalam Ruangan	22	
II.6 Kaca Bening		23	
II.6 Kaca Berwarna Gelap24			
II.7 Lux Meter		25	
II.8 Lux Meter	1.8 Lux Meter2		

Tabel		Halaman
II.1 Ukuran Daun Pintu da	an Daun Jendela untuk Rumah Sederhana.	14
	UNIVERSITAS ISLAM NEGERI	
II.2 Ukuran Kayu Terpilih	Untuk Kusen	14
7		
II.3 Standar Tingkat Penca	ahayaan yang Direkomendasikan	21
<i>5</i>	MAKASSAR	
III. Nilai intensitas pencah	nayaan pada ruang	31
1		
IV. Ukuran Jendela Hasil	Survei	33

IV.6	Grafik hubungan antara ukuran jendela kaca hitam arah barat terhadap titik dalam
	ruang
IV.7	Grafik hubungan antara ukuran jendela hitam terhadap intensitas pencahayaan ruang pada arah barat
IV.8	Grafik hubungan antara ukuran jendela kaca hitam arah barat terhadap titik dalam ruang

ABSTRAK

Nama : Miftahul Jana

Nim : 60400112020

Judul Skripsi : Pengaruh Ukuran Jendela Terhadap Intensitas

Pencahayaan Ruang

Penelitian ini bertujuan untuk mengetahui pengaruh ukuran dan arah jendela terhadap intensitas pencahayaan ruang, menghitung tingkat perubahan intensitas pencahayaan alami dalam ruangan pada pagi dan sore hari dan membandingkan arah barat dan timur serta perbandingan kaca hitam dan bening. Sampel dari penelitian ini adalah jendela yang ada di Rusunawa UIN Alauddin Makassar. Metode yang digunakan adalah metode eksperimen dengan observasi lapangan dengan menggunakan lux meter untuk mengukur intensitas pencahayaan cahaya alami yang terjadi dalam ruangan dan di luar ruangan kemudian didistribusikan dalam bentuk tabel untuk mendapatkan iluminansi rata-rata setiap hasil pengukuran menggunakan program Microsoft Excel dengan ukuran jendela yang digunakan hasil dari observasi yaitu ukuran (140 x 80) cm², (140 x 60) cm², (130 x 70) cm², (120 x 70) cm² dan (110 x 70) cm². Berdasarkan hasil penelitian dapat disimpulkan bahwa ukuran dan arah jendela mempengaruhi banyaknya intensitas pencahayaan yang masuk dalam ruang. Ukuran dan arah jendela yang sesuai dengan standar minimum SNI dimana tingkat intensitas cahaya yang dianjurkan berdasarkan SNI-03-6197-2000 antara 120 - 250 lux yaitu hanya pada jendela bening dengan arah jendela timur (140 x 80) cm² dengan nilai 137,49 lux, ukuran jendela (140 x 60) cm² dengan nilai 150,35 lux, ukuran jendela (130 x 70) cm² dengan nilai 138,29 lux, dan ukuran jendela (120 x 70) cm² dengan nilai 120,74 lux dan jendela bening arah barat yang memenuhi yaitu ukuran jendela (140 x 80) cm² dengan nilai 141,01 lux.

Kata Kunci: Jendela, Intensitas Pencahayaan dan Lux Meter.

ABSTRACT

Name : Miftahul Jana

Nim : 60400112020

The Title Thesis: Influence Size The Window To Intensity Lighting Space

This research aims to understand the influence of size and direction of the window lighting against the intensity of the space, calculate the changes in the intensity of natural lighting in the room on the morning and afternoon and comparing the direction of west and east and comparisons between black glass and pellucid. Sample from the study is the window that is at Rusunawa Uin Alauddin Makassar. Methods used is the method his experiments with observation the field by using lux meters for measuring the intensity of lighting light either natural occurring in the room and outdoors then distributed in table form to get iluminansi the average every the measurement result on the microsoft excel with the size of the window used the result of observation which is a measure (140 x 80) cm², $(140 \times 60) \text{ cm}^2$, $(130 \times 70) \text{ cm}^2$, $(120 \times 70) \text{ cm}^2$ and $(110 \times 70) \text{ cm}^2$. Based on the research done can be concluded that size and direction the window affect many intensity lighting in space. Size and direction the window appropriate To minimum standards SNI where the rate the intensity of light advocated based on SNI-03-6197-2000 between 120 - 250 lux only in the window clear to the direction of the window the east (140 x 80) cm² with the 137,49 lux, size of the window (140 x 60) cm² with the 150,35 lux, size of the window (130 x 70) cm² with the 138,29 lux, size of the window (120 x 70) cm² with the 120,74 lux and the window clear the west who fulfill which is a measure the window (140 x 80) cm² with the 141,01 lux.

Keywords: Window, The Intensity Lighting and Lux Meters

BABI

PENDAHULUAN

A. Latar Belakang

Indonesia merupakan Negara kepulauan yang terletak pada garis khatulistiwa dengan kondisi iklim tropis dengan sinar matahari yang melimpah di sepanjang tahun. Kondisi iklim ini memberikan peluang besar bagi pemanfaatan pencahayaan alami pada jendela sehingga mengurangi beban listrik untuk penerangan dalam suatu ruangan.

Jendela pada umumnya banyak dimanfaatkan sebagai pencahayaan ruang terutama untuk rumah tinggal, baik kondisi rumah dengan lahan yang cukup luas maupun kondisi rumah dengan lahan terbatas dengan pemilihan kaca yang lebih dominan yang digunakan adalah kaca bening dengan kaca hitam. Namun, banyak yang tidak memperhatikan ukuran jendela tersebut sudah memiliki kualitas pencahayaan yang sesuai dengan SNI dimana tingkat intensitas cahaya yang dianjurkan berdasarkan SNI-03-6197-2000 antara 120 – 250 lux untuk ruang beraktivitas seperti ruang tamu, ruang makan, ruang kerja dan ruang tidur.

Jendela memiliki peran yang sangat penting dalam memasukkan cahaya alami dalam ruangan. Semakin besar ukuran jendela maka semakin banyak cahaya alami yang masuk sehingga mengakibatkan terjadinya kesilauan yang dapat menimbulkan tanda-tanda penyakit yang terkait dengan penglihatan seperti sakit kepala, ketegangan penglihatan, dan ketidaknyamanan visual. Sebaliknya semakin kecil ukuran jendela maka semakin sedikit cahaya alami yang masuk sehingga mengakibatkan kualitas pencahayaan yang tidak bagus (Baharuddin, 2011).

Penelitian sebelumnya juga dilakukan oleh Juddah (2013) dengan judul "Pengaruh Orientasi dan Luas Bukaan Terhadap Intensitas Pencahayaan pada Ruang Laboratorium" yang menjelaskan bahwa orientasi dan luas ukuran jendela mempengaruhi besarnya intensitas cahaya yang masuk ke dalam ruang laboratorium dengan hasil penelitian menunjukkan bahwa ruangan yang orientasinya Utara-Selatan dengan ukuran pada dinding sisi Timur dan Barat akan membutuhkan luas ukuran yang lebih kecil (11% - 13%) dari pada ruangan yang orientasinya Timur-Barat dengan ukuran pada dinding sisi Utara dan Selatan (13% - 18%).

Penelitian lainnya telah dilakukan oleh Baharuddin (2011) dengan judul "Pengaruh Bukaan Jendela Terhadap Penetrasi Cahaya Alami Dan Radiasi Matahari dalam Ruangan",yang menjelaskan luas ukuran jendela sangat berpengaruh terhadap penetrasi cahaya alami dan radiasi matahari dalam ruangan. Semakin luas ukuran jendela, maka akan semakin besar penetrasi cahaya alami dan radiasi matahari yang masuk ke dalam ruangan. Esa Dora (2011) juga melakukan penelitian dengan judul "Pemanfaatan Pencahayaan Alami Pada Rumah Tinggal Tipe Townhouse Di Surabaya", yang menjelaskan bahwa letak bangunan yang berderet dan saling berdempetan satu dengan yang lain mengakibatkan minimnya lahan yang tersedia sehingga pencahayaan alami yang masuk kedalam rumah tidak optimal sehingga lebih sering menggunakan energi listrik pada siang hari.

Penelitian tentang jendela juga dilakukan oleh Daryanto (2012) dengan judul penelitian "Jendela Hemat Energi Pada Fasade Rumah Susun Di Jakarta", yang menjelaskan bahwa jendela merupakan salah satu komponen bangunan yang berhubungan langsung dengan aspek pencahayaan dan penghawaan menggunakan simulasi program CFD (*Computational Fluid Dynamics*) serta *Ecotech* dengan hasil

penelitian menunjukkan bahwa jendela nako pada bagian tengah dinding yang menghadap keluar dan dua kisi- kisi di atas pintu masuk dan di atas dinding ruangan yang berseberangan yang dikombinasikan dengan rongga di bagian bawah pintu mampu menggerakkan ventilasi silang di area hunian. Kecepatan angin yang dihasilkan pada kisaran 0,15 sampai 1,2 m/s cukup untuk memperoleh efek sejuk dan penerangan alami rata-rata 200 lux sehingga layak untuk penerangan aktivitas hunian.

Berdasarkan pemaparan di atas maka dibutuhkan suatu studi dalam bentuk *eksperiment* untuk menentukan ukuran jendela yang mampu menyesuaikan cahaya alami dengan ketentuan SNI sehingga penulis tertarik melakukan penelitian dengan judul "Pengaruh Ukuran Jendela Terhadap Intensitas Pencahayaan Ruang".

B. Rumusan Masalah

Berdasarkan latar belakang di atas, maka dapat dibuat suatu rumusan masalah yaitu: Bagaimana pengaruh ukuran dan arah jendela terhadap intensitas pencahayaan ruang?

C. Tujuan Penelitian

Tujuan dari penelitian ini adalah sebagai berikut: Untuk mengetahui pengaruh ukuran dan arah jendela terhadap intensitas pencahayaan ruang.

D. Ruang Lingkup

Batasan pada penelitian ini yaitu ruang yang digunakan berukuran $4 \times 3 \text{ m}^2$ dengan warna tembok putih dan jarak yang digunakan 100 cm dari jendela, penelitian ini dilakukan pada dua waktu yaitu pagi ketika matahari condong ke arah timur mulai pukul 08.00 - 10.00 Wita dan sore ketika matahari condong ke arah barat mulai pukul 14.00 - 16.00 Wita setiap satu jam. Untuk mengukur intensitas pencahayaan

ruang dengan ukuran jendela yang digunakan yaitu (140 x 80) cm², (140 x 60) cm², (130 x 70) cm², (120 x 70) cm² dan (110 x 70) cm² dengan menggunakan kaca bening dan kaca hitam (*tinted glass*) dengan menggunakan alat ukur lux meter.

E. Manfaat Penelitian

Manfaat yang dapat diperoleh dalam penelitian ini yaitu sebagai berikut:

- Sebagai bahan acuan dalam mengevaluasi dan menentukan kebijakan khususnya dalam pemilihan ukuran jendela sebagai penataan pencahayaan alami.
- 2. Memberikan informasi tentang ukuran jendela yang memiliki intensitas pencahayaan ruang yang sesuai dengan SNI.

BAB II

TINJAUAN PUSTAKA

A. Jendela

1. Pengertian Jendela

Jendela adalah salah satu bentuk pelubangan dinding yang lazim dipasang /dilengkapi tritisan atau merupakan bagian elemen (unsur rumah/ bangunan) yang dapat memasukkan cahaya alami atau sirkulasi udara dari dalam dan dari luar bangunan (Bebhi, 2014: h. 4). Menurut Daryanto (2012), jendela merupakan salah satu komponen bangunan yang berhubungan langsung dengan aspek pencahayaan dan penghawaan.

Menurut Dahniar dan Andi Asmulyani (2013), jendela merupakan ukuran pada sebuah dinding di sebuah bangunan yang memasukkan cahaya dan udara ke dalam ruang dalam (interior). Ukuran jendela merupakan elemen yang dapat memodifikasi iklim luar ke dalam interior. Oleh karena itu, jendela sangat diperlukan dalam suatu ruang sehingga ruangan tersebut mendapatkan penerangan alami dari cahaya matahari yang menghemat biaya listrik.

Gambar II.1: Jendela

Sumber: https://www.google.com/search

Matahari merupakan satu-satunya sumber cahaya alami yang menghasilkan cahaya alami (daylight) dengan disertai energi cahaya dan energi panas. Energi cahaya yang dihasilkan oleh sinar matahari akan berpengaruh pada kenyamanan visual di dalam bangunan, sedangkan energi panas akan berpengaruh pada kenyamanan termal. Sinar matahari yang dipakai sebagai salah satu sumber cahaya didalam ruang, juga sangat dipengaruhi oleh bidang edar/posisi dari sinar matahari itu sendiri. Dengan rnengetahui secara pasti tentang gerakan atau bidang dari matahari, maka dapat digambarkan secara utuh mengenai kedudukan matahari apabila ia berada tepat diatas Khatulistiwa pada bulan Maret dan September, di Utara Khatulistiwa pada bulan Juni ataupun di Selatan Khatulistiwa pada bulan Desember.

Cahaya yang dipancarkan matahari ke permukaan bumi menghasilkan iluminasi yang sangat besar, yaitu lebih dari 100.000 lux pada kondisi langit cerah dan 10.000 lux pada saat langit berawan. Pemanfaatan cahaya matahari tergantung pada letak ruangan atau gedung terhadap rotasi bumi pada matahari. Rotasi bumi yang bergerak dari arah Barat menuju ke Timur berpengaruh sangat baik terhadap ruangan yang mempunyai sistem pencahayaan matahari menghadap ke Timur atau Barat (Juddah, 2013: h. 4).

Ayat yang menjelaskan tentang matahari yaitu dalam Q.S. Al-Syams (91) 1:

Terjemahnya:

"Demi matahari dan cahayanya di pagi hari" (Kementrian Agama RI, 2012: h. 595).

Ayat ini menjelaskan bahwa Allah swt. mengambil persumpahan dengan beberapa makhluk yang Dia ciptakan dibandingkan manusia di mana salah satunya

adalah matahari, agar manusia dapat memperhatikan terbit dan terbenamnya karena dia merupakan ciptaan Allah swt. yang besar dan dahsyat. Allah swt. mengambil pula cahaya siangnya sebagai persumpahan karena sejak matahari mulai berangsur panas sampai matahari di pertengahan langit disebut juga waktu Dhuha karena waktu inilah manusia memanfaatkan untuk mencari sumber kehidupan dan penerang mencari petunjuk dalam alam ciptaan Tuhan yang luas (Hamka, 1988: h. 172-173).

Secara umum sinar matahari yang masuk ke dalam ruangan bisa dibedakan dalam beberapa jenis:

- a. Sinar matahari langsung yang masuk kedalam ruang tanpa terhalang oleh apapun.
- b. Sinar matahari tidak langsung tapi pancaran sinar mengenai awan dan awan memantulkan lalu sinar tersebut masuk atau menyinari ruangan, atau pantulan dari benda-benda diluar bangunan (kaca, tembok putih hingga seng rumah tetangga).
- c. Sinar matahari refleksi dari dalam ruangan, yaitu cahaya dalam ruangan yang disebabkan oleh pantulan sinar matahari yang mengenai benda-benda atau elemenelemen didalam ruang itu sendiri (Prianto, 2013: h. 40).

Allah swt. telah menciptakan matahari sebagai sumber cahaya yang dapat dimanfaatkan oleh seluruh makhluk hidup sebagaimana firman Allah swt. dalam Q.S. Al-Naba (78) 13:

Terjemahnya:

"Dan kami jadikan pelita yang amat terang (matahari)" (Kementrian Agama RI. 2012; h. 582).

Ayat ini menjelaskan bahwa Allah swt. menciptakan matahari dan menamai matahari sebagai "siraajan" yang berarti pelita karena memancarkan cahaya dan panas secara bersamaan. Berkaitan dengan ayat di atas bahwasanya sinar matahari

menghasilkan energi yang berupa ultraviolet 9%, cahaya 46%, dan inframerah 45% (Shihab, 2002: h. 10-11).

Ayat lain sebagaimana dijelaskan juga dalam Q. S. Nuh (71) 16:

Terjemahnya:

Dan Allah menciptakan padanya bulan sebagai cahaya dan menjadikan matahari sebagai pelita? (Kementrian Agama RI, 2012: h. 571).

Ayat ini menjelaskan perintah Allah swt. kepada Nabi Nuh untuk memperhatikan kejadian alam semesta dan waktu perjalanan matahari dan bulan karena Allah swt. menciptakan bulan sebagai cahaya yang mengisyaratkan adanya perbedaan antara matahari dan bulan. Matahari dijadikan Allah (bagaikan) pelita, yakni memiliki sumber cahaya sendiri, sedangkan bulan tidak dijadikan pelita karena bukan termasuk planet yang memiliki sumber cahaya sendiri melainkan hanya memantulkan cahaya (Ibnu Katsir, 2000).

Ayat lain juga menjelaskan tentang mtahari dalam Q. S. Yunus (10) 5: عُوَ ٱلَّذِي ٱلشَّمْسَ ضِيَاءٌ وَٱلْقَمَرَ ثُورٌا وَقَدَّرَهُ مَنَازِلَ لِتَعْلَمُواْ عَدَدَ هُوَ ٱلَّذِي ٱلْحَسَابُ الْلَّالِيَا لِلَّا لِالْحَقِّ يُفَصِّلُ ٱلْأَيْتِ لِقَوْمِ لِلْكَ لِلَّا لِلَّالِيَةِ لِقَوْمِ لَلْكَ لِلَّا لِلَّا لِلَّا لِلَّا لِلَّا لِلَّالِيَةِ لِقَوْمِ لَلْكَ لِلَّا لِلَّا لِلَّا لِلَّا لِلَّا لِلَّالِيَةِ لِلْفَالِقُ لِللَّا لِلَّا لِلَّا لِلَّا لِلَّا لِلَّا لِللَّا لِلَّا لِللَّا لِللَّا لِللَّا لِللَّا لِللَّا لِللَّا لِللَّا لِللَّا لِللَّا لِللَّهُ لِللَّا لِللَّالِيَةِ لِللَّالِيَةِ لِللَّالِّ لِللَّالِيَةِ لِللَّالِيَّةِ لِللَّا لِللَّا لِللَّالِيَّةِ لِللَّالِيَّةِ لِللَّالِيَّةِ لِللَّالِيِّ لِللَّالِيِّ لِللْلِيَّالِيَّةِ لِللَّالِيِّ لِلْلَهُ لِللَّالِيِّ لِللَّالِيِّ لِللْلِيَّةِ لِللْلِيْفِي لِلْلِيْفِي لِللْلِيْفِي لِللْلِيْفِي لِلْلِيْفِي لِلْلِيْفِي لِلْلِيْفِي لِللْلِيْفِي لِللْلِيْفِي لِلْلَّالِيِّ لِلْلَّالِيَّةِ لِلْلِيْفِي لِلْلِيْفِي لِلْلَّالِيْفِي لِلْلَّذِي لِلْلَّالِيْفِي لِلْلَّهُ لِلْلِيْفِي لِلْلِيْفِي لِللْلِيْفِي لِلْلَّالِيْفِي لِللْلِيْفِي لِلْلِيْفِي لِللْلِيْفِي لِيْفِي لِلْلِيْفِي لِلْلِيْفِي لِلْلِيْفِي لِلْلِيْفِي لِلْلِيْفِيلِيْفِي لِلْلِيْفِي لِلْمِي لِلْمِيْفِي لِلْمِيْفِي لِلْمِيْفِي لِلْمِيْفِي لِلْمِيْفِي لِلْلِيْفِي لِلْمِيْفِي لِلْمِيْفِي لِلْمُنْفِي لِلْمِيْفِي لِلْمِيْفِي لِلْمُعِلِيْفِي لِلْمِي لِلْمِيْفِي لِلْمِيْفِي لِلْمِيْفِي لِلْمِي لِلْمِيْفِي لِلْمِي لِلْمِيْفِي لِلْمِيْفِي لِلْمِيْفِي لِلْمِيْفِي لِلْمِيْفِي لِلْمِيْفِي لِلْمِيْفِي لِلْمُنِيْفِي لِلْمُنِلِيْفِي لِلْمِيْفِ

AKAS

Dialah yang menjadikan matahari bersinar dan bulan bercahaya dan ditetapkan-Nya manzilah-manzilah (tempat-tempat) bagi perjalanan bulan itu, supaya kamu mengetahui bilangan tahun dan perhitungan (waktu). Allah tidak menciptakan yang demikian itu melainkan dengan hak. Dia menjelaskan tanda-tanda (kebesaran-Nya) kepada orang-orang yang mengetahui" (Kementrian Agama RI, 2012: h. 208).

SA

Dari kedua ayat diatas memberikan definisi yang tepat untuk kata dhiya'(sinar) dan Nur (cahaya) yang dalam bahasa Arab kedua kata tersebut digunakan untuk menunjuk sesuatu yang memancar dari benda yang terang dan

membantu manusia untuk dapat melihat benda-benda atau gejala-gejala lain yang memancarkan sinar seperti *barq* (kilat), *nar* (api) atau zait (minyak).

Dalam arti fisis, cahaya mempunyai peranan penting bagi manusia. Cahaya adalah bagian dari gelombang elektromagnetik. Dengan adanya cahaya maka warna dapat dilihat oleh mata, cahaya yang dapat terlihat oleh mata adalah cahaya tampak. Matahari merupakan bintang dengan pengertian bahwa matahari dapat menghasilkan atau memancarkan cahaya sendiri. Dalam Al-Qur'an telah dijelaskan tentang bendabenda yang mengeluarkan cahaya sendiri (dalam Al-Qur'an menggunakan kata *dhiya*', seperti matahari). Sedangkan kata nur (cahaya) dan beberapa turunannya menggambarkan cahaya yang ditimbulkan akibat pantulan benda yang terkena sinar, seperti bulan (Pasya, 2004: h. 101).

2. Fungsi Jendela

Salah satu fungsi jendela ini adalah untuk mendapatkan penerangan alami (Prianto, 2013). Menurut dahniar dan andi asmulyani (2013) Jendela berkembang seiring zaman dan di semua daerah, tetapi tujuan utamanya untuk memasukkan sinar matahari menjadi aturan yang utama.

Desain jendela dipengaruhi faktor lokasi, penempatan, dimensi dan tipe atau model jendela yang dipilih. Jendela yang berfungsi sebagai inlet (memasukkan udara) sebaiknya diletakkan pada ketinggian manusia yaitu 60 cm sampai 150 cm (aktivitas berdiri), agar udara dapat mengalir di sekitar manusia tersebut untuk memperoleh rasa nyaman yang diharapkan. Sedangkan jendela yang berfungsi sebagai outlet (mengeluarkan udara) diletakkan lebih tinggi, agar udara panas dalam ruang dapat dengan mudah dikeluarkan (Ade, 2013: h. 151).

Dengan memperhatikan orientasi jendela, acuan akan dibuat berdasarkan orientasi georafi karena garis edar matahari akan berpengaruh pada pencahayaan alami. Berdasarkan pandangan ini, arah timur-barat secara umum akan memberikan dampak yang sama, walaupun terjadi dalam waktu yang berbeda pada hari yang sama. Jendela dapat dikelompokkan ke dalam:

a. Jendela menghadap selatan

Tingkat penerangan tinggi dan sedikit variabel cahaya; memiliki energi tinggi pada musim dingin dan sedang dimusim panas.

b. Jendela menghadap timur-barat

Keduanya menyediakan tingkat penerangan yang sedang, namun menghasilkan cahaya yang sangat baik, orientasi ke timur menghasilkan cahaya yang dengan intensitas tinggi pada pagi hari, sedangkan orientasi ke barat menghasilkan intensitas yang tinggi pada siang hari. Memiliki energi yang tinggi pada musim panas dan rendah pada musim dingin.

c. Jendela menghadap utara

Tingkat penerangan rendah, namun menghasilkan tingkat cahaya yang stabil sepanjang hari, energi yang dihasilkan sangat rendah (Manurung, 2012: h. 71-72).

3. Bentuk-bentuk Jendela

Menurut esa dora (2011) memperbesar dimensi bukaan (jendela dan pintu) secara otomatis akan memperbesar area masuknya cahaya dan pertukaran udara. Umumnya luas bukaan jendela adalah 1/6 - 1/8 luas lantai ditambah bovenlist sedikitnya 1/3 kali luas bidang jendela. Secara keseluruhan bukaan ideal mencapai 40 – 80% luas keseluruhan dinding atau 10 – 20% luas keseluruhan lantai. Pada

bukaan berupa jendela, intensitas pencahayaan alami yang masuk ditentukan oleh jenis kaca yang dipakai.

Faktor yang mempengaruhi penyebaran dan kedalaman penetrasi cahaya siang hari selain kondisi langit adalah orientasi jendela, lokasi jendela dalam dinding dan dalam kaitannya dengan sisa ruangan, ketinggian efektif jendela (dari ambang batas atas jendela) dan lebar (safruddin, 2013).

Menurut Ade (2013) tipe jendela untuk *inlet* menentukan volume dan distribusi udara dalam ruangan jendela harus cenderung mengarahkan aliran angin untuk tetap berada pada arah horizontal atau menaikkannya ke atas. Jendela jenis *double-hung*, *single-hung* dan jendela geser tidak mengarahkan angin ke atas tetapi memasukkan angin pada jalur horizontal, untuk itu sebaiknya tipe ini diletakkan pada ketinggian di mana aliran angin dibutuhkan.

Gambar II.2: Macam-Macam Jendela

Sumber: https://www.google.com/search

Jenis *casement*, *folding*, dan *ayun* dapat membelokkan angin ke kanan ke kiri, tidak untuk ke atas atau ke bawah, sebaiknya tipe ini juga diletakkan pada ketinggian di mana aliran angin dibutuhkan.

Gambar II.3 : Jendela Casement dan Jendela Pivot

Sumber: https://www.google.com/search

Jenis jendela katup, jendela ayun, *pivot*, dan *jalousie* mengarahkan angin ke atas atau ke bawah kecuali jendela dibuka penuh 90 derajat, sebaiknya diletakkan di atas atau di bawah permukaan di mana dibutuhkan angin. Perlu diperhatikan bahwa jendela berperilaku berbeda pada bangunan bertingkat tinggi karena arah angin cenderung naik pada kulit bangunan sebelum memasuki ruangan.

Gambar II.4: (a) Jendela katup dan (b) Jendela ayun Sumber: https://www.google.com/search

Bentuk-bentuk jendela sangat beragam. Hal pertama yang dapat dilakukan mendefinisikan perbedaan antara tinggi dan lebar. Jendela dapat diklasifikasikan berdasarkan:

a. Jendela horizontal: koefisien bentuk ½

b. Jendela vertical : koefisien bentuk 2

c. Jendela menengah : koefisien bentuk ½ - 2

Posisi jendela dapat digambarkan berdasarkan posisi vertikal dan horizontalnya pada dinding. Mengacu pada posisinya terhadap tinggi dinding, jendela dapat diklasifikasikan berdasarkan :

- a. Jendela tinggi
- b. Jendela menengah
- c. Jendela rendah

Jendela yang lebih tinggi lebih baik dalam memasukkan cahaya alami, menghasilkan distribusi cahaya yang baik ke dalam ruangan. Jendela yang tinggi dapat mendorong keluarnya udara panas dan dapat menjadi batasan dalam menentukan pandangan ke luar. Mengacu pada posisinya terhadap lebar bangunan, universitas islam negeri jendela dapat diklasifikasikan berdasarkan:

- a. Jendela tengah (menghasilkan distribusi cahaya yang lebih baik).
- b. Jendela samping
- c. Jendela sudut (menghasilkan silau yang lebih kecil).

Untuk mengelompokkan jendela berdasarkan tipenya, beberapa kriteria dari sifat berikut dapat digunakan lima sifat utama jendela adalah: jendela untuk pencahayaan alami, jendela untuk pencahayaan alami, jendela untuk pencahayaan alami dan pandangan keluar, jendela untuk pencahayaan dan penghawaan alami dan

jendela untuk pencahayaan, pandangan keluar dan penghawaan alami (Manurung, 2012: h. 69-71).

4. Ukuran Jendela

Menurut Ashita (2014) bukaan yang ada di bagian samping ruangan, yang paling umum dijumpai adalah jendela. Perencanaan jendela harus dilakukan dengan hati-hati, karena perencanaan yang tidak tepat dapat menimbulkan silau dan suhu ruangan yang cenderung panas.

- a. Penempatan jendela sebaiknya berada tinggi dari lantai dan tersebar merata
 (tidak hanya berada pada satu sisi dinding saja) agar dapat
 mendistribusikan cahaya dengan merata.
- b. Jendela yang terlalu luas sering kali tidak tepat digunakan pada negara yang beriklim tropis, arena panas dan radiasi silau terlalu banyak masuk ke dalam ruang.
- c. Perlindungan terhadap cahaya matahari dapat dilakukan dengan dua cara, yaitu pembayangan cahaya matahari dan penyaringan cahaya matahari.

Menurut dahniar dan andi asmulyani (2013) ada banyak tipe dan ukuran jendela, pilihan mempengaruhi tidak hanya penampilan fisik bangunan, tetapi juga pencahayaan alami, ventilasi, potensi pemandangan dari ruang interior bangunan.

Beberapa kriteria yang perlu diperhatikan dalam merancang jendela antara lain: luas bidang bukaan (jendela kaca), posisi atau letaknya pada fasad, perlunya bidang pelindung/tritisan, flexibilitas bukaan untuk memberikan aliran udara dapat

diatur sesuai kebutuhan, serta material kerangka kosen (Daryanto, 2012: h. 6).

Tabel II.1: Tabel Ukuran Daun Pintu dan Daun Jendela untuk Rumah Sederhana

	Tebal Jadi (mm)	Lebar Rangka (mm)	Lebar Daun (mm)	Tinggi Daun (mm)
Daun Jendela	30	60,80,100,120	520	112
Jenuera	30	00,80,100,120	320	112
	35		820	0

Tabel II.2: Tabel Ukuran Kayu Terpilih Untuk Kusen

Kusen	Ukuran (mm)
	60x10 <mark>0, 60x1</mark> 20, 60x130, 60x150
Jendela	80x100, 80x120, 80x150
	100x120, 100x150

Sumber: SNI 03-0675-1989

Menurut Manurung (2012) ada perbedaan antara permukaan mutlak (*absolute surface*) dengan fenetrasi (*fenestration*) jumlah jendela yang berhubungan dengan ruang yang diterangi melalui cahaya yang masuk dari jendela, digambarkan dengan persentase. Permukaan mutlak jendela hanya akan mempengaruhi penghawaan dan pandangan keluar, sedangkan fenestrasi akan mempengaruhi jumlah dan distribusi cahaya. Permukaan mutlak (m²) jendela dikelompokkan berdasarkan ukuran, ditentukan berdasarkan skala manusia (*human scale*):

a. Kecil : permukaan kurang dari 0,5 m²

b. Sedang: permukaan antara 0,5 - 2 m²

c. Besar : permukaan lebih besar dari 2 m²

Secara umum, jendela yang kecil memberikan pandangan keluar yang terbatas dan lebih spesifik, serta memperkuat kesan terisolasi dari ruang luar. Tipe jendela juga dapat menimbulkan silau (*glare*). Jika terdapat lebih dari satu jendela dalam sebuah ruang yang sama, jumlah permukaan seluruh jendela harus dipertimbangan berdasarkan titik cahaya dalam hubungannya dengan luas ruangan. Tergantung pada hubungan antara permukaan jendela dan ruang dalam, beberapa klasifikasi berikut dapat dibuat:

- a. Fenetrasi sangat rendah: kurang dari 1%
- b. Fenetrasi rendah: 1-4 %
- c. Fenetrasi sedang: 4-10 %
- d. Fenetrasi tinggi: 10-25 %
- e. Fenetrasi sangat tinggi: lebih dari 25 %

Secara umum, fenetrasi yang tinggi dan sangat tinggi akan menimbulkan masalah termal dan kesilauan.

B. Intensitas Pencahayaan

1. Cahaya

Cahaya adalah rambat gelombang elektromagnetik yang menjalar kesegala arah yang dibedakan oleh panjang gelombang dan frekuensi dengan gelombang elektromagnetik lainnya (Nurul Huda, 2012: 2). Cahaya itu sendiri diambil dari Wikipedia Bahasa Indonesia adalah energi berbentuk gelombang elektromagnetik yang kasat mata dengan panjang gelombang sekitar 380-750 mm (Nur Huda, 2014: 2).

Menurut Kamus Besar Bahasa Indonesia, pencahayaan adalah proses, cara, perbuatan memberi cahaya. Cahaya adalah prasyarat untuk penglihatan manusia terutama dalam mengenali lingkungan dan menjalankan aktifitasnya. Pada dasarnya objek yang kita lihat adalah pantulan cahaya dari objek tersebut. Oleh sebab itu bagaimana kita melihat dan merespon sekeliling kita sangat tergantung dari jenis pencahayaan yang digunakan (Esa Dora, 2011: 5).

Cahaya matahari (*sunlight*) mempunyai gelombang antara 290-2300 nm dan mempunyai spektrum lengkap dari Ungu-ultra sampai merah-infra. Mata manusia paling peka terhadap cahaya kuning (550 nm). Cahaya langit (*sky light*) adalah cahaya bola langit. Cahaya inilah yang dipakai untuk penerangan alami ruangan, bukan sinar matahari langsung. Sinar matahari langsung dapat menyilaukan mata dan membawa panas, sehingga tidak dipakai untuk menerangi ruangan. Faktor pencahayaan alami siang hari (*FPASH*) pada suatu titik dalam ruangan adalah perbandingan antara iluminansi horizontal di bidang kerja dalam ruangan (E_i [lux]) terhadap iluminasi horizontal di lapangan terbuka di luar ruangan (E_o [lux]) pada saat yang sama.

$$FPASH = \frac{E_{i}}{E_{G}} \times 100 \%$$
 (per 2.1)

(Ashari dan ikhwanudin, 2012: h. 4).

Pencahayaan adalah kepadatan dari suatu berkas cahaya yang mengenai suatu permukaan. Cahaya mempunyai panjang gelombang yang berbeda-beda dalam spektrum yang tampak (cahaya tampak). Intensitas pencahayaan adalah banyaknya

cahaya yang jatuh pada permukaan yang dinyatakan dengan satuan lux (Puspitasari, 2013).

Menurut Einstein cahaya mempunyai sifat sebagai gelombang dan sebagai materi. Cahaya dapat dianggap sebagai gelombang karena dapat mengalami peristiwa pantulan, interferensi dan difraksi. Cahaya dapat dipandang sebagai materi atau kuantum yang dapat menimbulkan efek fotolistrik, dan efek Compton. Walaupun demikian cahaya tampak hanya merupakan bagian kecil dari spektrum gelombang elektromagnetik (Daryanto, 1997: h. 226)

Intensitas cahaya adalah besaran pokok fisika untuk mengukur daya yang dipancarkan oleh suatu sumber cahaya pada arah tertentu per satuan sudut. Satuan SI dari intensitas cahaya adalah candela (Cd). Cahaya dihasilkan bersamaan dengan terbentuknya radiasi saat partikel dipanaskan, seperti matahari yang menjadi sumber cahaya alami (Puspitasari, 2013).

Intensitas penerangan adalah banyaknya cahaya yang tiba pada satu luas permukaan. Penerangan berdasarkan sumbernya dibagi menjadi tiga, pertama penerangan alami yaitu penerangan yang berasal dari cahaya matahari, kedua penerangan buatan yaitu penerangan yang berasal dari lampu, dan yang ketiga adalah penerangan alami dan buatan yaitu penggabungan antara penerangan alami dari sinar matahari dan penerangan buatan yang berasal dari listrik/lampu (Salam, 2015).

Terdapat perbedaan mendasar antara pencahayaan dan penerangan.

Pencahayaan lebih menekankan sifat-sifat penyinaran yang harus dipelajari oleh seorang perancang interior. Penerapan pencahayaan yang baik tidak bisa lepas dari

pemanfaatan cahaya alami yang optimal dan buatan yang efisien. Sedangkan penerangan hanya sekedar membuat ruangan menjadi terang. Karena hanya sekedar mengejar terang dan tidak mengaplikasikan dengan bijaksana, maka bukaan besar dalam ruang menjadi dihindari karena akan menyebabkan panas semata yang akhirnya mengacu kepada pemborosan energi. Di lain pihak, pencahayaan yang kurang dapat membuat kita kesulitan merespon sekitar, sedangkan pencahayaan berlebihan dapat mengakibatkan silau (glare) sehingga pengguna tidak nyaman.

2. Prinsip Perjalanan Cahaya

Menurut Nurhuda (2014) ada lima dasar sifat cahaya yaitu :

1) Refleksi

Adalah proses pemantulan cahaya yang membentur bidang suatu obyek. Pantulan cahaya tergantung pada sifat bidang yang memantulkan cahaya tersebut (kasar-licin), sudut datang cahaya, posisi pengamatan terhadap bidang pantul.

2) Refraksi

Adalah proses pembelokan arah cahaya akibat perubahan kecepatan cahaya ketika sinar meninggalkan suatu medium tertentu.

3) Interferensi

Adalah kemampuan untuk saling mendukung dan atau melemahkan cahaya lain.

4) Transmisi

Terjadi apabila gelombang cahaya diteruskan oleh suatu benda tanpa pembelokan atau tanpa perubahan frekuensi. Tingkat transmisi atau transmittance () adalah perbandingan total cahaya yang diteruskan oleh suatu material dengan total cahaya yang datang.

5) Absorbsi

Adalah proses perubahan gelombang cahaya yang mengenai suatu permukaan menjadi bentuk energi yang lain, biasanya energi panas.

Tingkat transmisi cahaya dari material adalah kemampuan suatu material untuk meloloskan sejumlah cahaya yang diterimanya. Semakin tinggi tingkat transmisinya, semakin banyak cahaya yang akan diteruskan, demikian juga sebaliknya semakin rendah tingkat transmisinya, maka akan semakin sedikit cahaya yang akan diteruskan (Baharuddin, 2011: 5).

Jadi perbedaan prinsip dari cahaya yang dapat tertangkap oleh mata tapi tidak menimbulkan kalor, sedangkan sinar matahari adalah cahaya diluar spektrum warna yang tidak tertangkap oleh mata tapi menimbulkan kalor (Young and Freedman, 1996 : h. 496-497).

UNIVERSITAS ISLAM NEGERI

Cahaya mempunyai sifat-sifat tertentu. Sifat-sifat cahaya banyak manfaatnya bagi kehidupan antara lain:

1) Cahaya merambat lurus

Cahaya yang dipancarkan oleh sebuah sumber cahaya merambat ke segala arah. Bila medium yang dilaluinya homogen, maka cahaya merambat menurut garis lurus. Bukti cahaya merambat lurus tampak pada berkas cahaya matahari yang menembus masuk ke dalam ruangan yang gelap. Demikian pula dengan berkas lampu sorot pada malam hari. Berkas-berkas itu tampak sebagai batang putih yang lurus

ketika menyentuh permukaan suatu benda maka rambatan cahaya akan mengalami dua hal, yaitu pemantulan atau pembiasan. Pemantulan biasanya dialami benda yang tidak tembus cahaya, sedangkan pembiasan terjadi pada benda yang transparan atau tembus cahaya.

2) Cahaya dapat dipantulkan

Pemantulan cahaya ada dua jenis yaitu pemantulan baur dan pemantulan teratur. Pemantulan baur terjadi apabila cahaya mengenai permukaan yang kasar atau tidak tidak rata. Pada pemantulan ini, sinar pantul arahnya tidak beraturan. Sementara itu, pemantulan teratur terjadi jika cahaya mengenai permukaan yang rata, licin, dan mengkilap. Permukaan yang mempunyai sifat seperti ini misalnya pada cermin. Pada pemantulan ini sinar pantul memiliki arah yang teratur. Cermin merupakan salah satu benda yang memantulkan cahaya.

3) Cahaya dapat dibiaskan UNIVERSITAS ISLAM NEGERI

Apabila cahaya merambat melalui dua zat yang kerapatannya berbeda, cahaya tersebut dapat dibelokkan. Peristiwa pembelokkan arah rambatan cahaya setelah melewati medium rambatan yang berbeda disebut pembiasan.

4) Cahaya dapat diuraikan

Pelangi terjadi karena peristiwa penguraian cahaya (dispersi). Dispersi merupakan penguraian cahaya putih menjadi berbagai warna. Cahaya matahari

terlihat berwarna putih. Namun, sebenarnya cahaya matahari tersususn atas banyak cahaya berwarna (Sutrisno, 1979: h. 146-148).

C. Standar Pencahayaan

Setiap ruang kegiatan memiliki standar kuat penerangan (illumination) yang berbeda-beda sesuai dengan kegiatan yang berlangsung di dalamnya. Adapun kualitas cahaya yang baik adalah yang tidak menyilaukan, karena kesilauan dapat melelahkan mata dan tekanan psikis. Pada daerah tropis, cahaya matahari merupakan potensi besar untuk penerangan ruang, yang dalam hal ini harus diperhatikan adalah terang langit dan radiasi panasnya.

Menurut esa dora (2011) berikut adalah standar penerangan ruang dalam rumah menurut Standar Nasional Indonesia (SNI) guna mendukung fungsi ruang dan mengukur kecukupan cahaya dalam ruang:

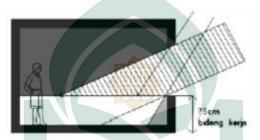
Tabel II.3. Tingkat Pencahayaan yang Direkomendasikan

r A.B. A	Tingkat Pencahayaan
Fungsi Ruang Teras	(Lux) 60
Ruang Tamu	120 – 250
Ruang Makan	120 - 250
Ruang Kerja	120 - 250
Kamar Tidur	120 - 250
Kamar Mandi	250
Dapur	250
Garasi	60

Sumber: SNI-03-6197-2000

Ketersediaan cahaya matahari yang melimpah merupakan suatu kelebihan tersendiri bagi hunian di lingkungan tropis. Intensitas penerangan alami di daerah

khatulistiwa dapat mencapai ± 10.000 lux dan tersedia sepanjang tahun dengan intensitas yang dipengaruhi kubah langit. Lama waktu penyinaran matahari relatif stabil sepanjang tahun yaitu antara pukul 06.00-18.00 atau antara 11-12 jam (Dinulfy, 2014).


Perancangan pencahayaan alami siang hari dapat dipengaruhi oleh pencahayaan alami dan luas lubang cahaya dan letak dan bentuk lubang cahaya yang direkomendasikan oleh SNI 03-2396-2001.

Tabel II.4. luas ruangan yang Direkomendasikan untuk titik ukur dari sumber cahaya

No.	Gambar	Luas ruangan		
1.	im im	Luas ruangan kurang dari 10 meter persegi: titik potong garis horizontal panjang dan lebar ruangan adalah pada jarak setiap 1 (satu) meter.		
2.	3m UNIVERSITAS ISL	Luas ruangan antara 10 meter persegi sampai 100 meter persegi: titik potong garis horizontal panjang dan lebar ruangan adalah pada jarak setiap 3 (tiga) meter.		
3.	6 m 6 m 6 m 6 m	Luas ruangan lebih dari 100 meter persegi: titik potong horizontal panjang dan lebar ruangan adalah pada jarak 6 meter.		

Sumber: SNI 03-2396-2001

Menurut SNI, pencahayaan alami pada siang hari dapat dikatakan baik apabila pada pukul 08.00-16.00 waktu setempat terdapat cukup banyak sinar matahari yang masuk ke dalam ruangan. Selain itu, distribusi cahaya dalam ruangan harus merata sehingga tidak menimbulkan kontras yang mengganggu dan bidang kerja diletakkan setinggi 75 cm dari lantai karena standar SNI dari bidang lantai berdasarkan aktivitas berdiri dan ketinggian duduk.

Gambar II.5: Ukuran Tinggi Di Bidang Kerja Sumber : https://www.google.com/search

Menurut Prianto (2013) Terdapat dua aspek dalam penerangan alami ini adalah cahaya matahari dan sinar matahari. Cahaya matahari adalah terang yang dihasilkan dari terang langit (tidak ada unsur energi panas). Sinar matahari adalah terang yang dihasilkan dari radiasi matahari secara langsung (mengandung unsur energi panas). Dalam perencanaan dan perancangan bangunan, diusahakan untuk memasukkan cahaya matahari semaksimal mungkin, sedangkan sinar matahari ini diusahakan agar tidak masuk ke dalam ruangan (lihat Gambar II.6):

Gambar II.6: Proses Penerangan Alami ke dalam Ruangan Sinar dan Cahaya Masuk.

D. Kaca

Masing-masing jenis kaca memiliki kelebihan dan kekurangan sebagai berikut:

1. Kaca Bening

Kaca ini juga sering disebut dengan kaca polos atau dalam istilah teknisnya adalah *float glass*. Kaca ini tidak berwarna, memiliki permukaan yang sangat bersih, rata dan bebas distorsi. Karena sifat kacanya yang tidak berwarna, jenis kaca ini memberikan tingkat transmisi yang tinggi (lebih dari 90%) serta memberikan bayangan yang sempurna.

Kaca ini banyak digunakan untuk eksterior maupun interior bangunan, baik rumah tinggal maupun gedung bertingkat. Namun kaca ini tidak direkomendasikan untuk ektserior bangunan bertingkat karena kemampuan menahan panas matahari yang rendah. Kaca ini juga dapat digunakan untuk perabot rumah tangga, misalnya lemari, dinding dekorasi, akuarium dan sebagainya. Ketebalan kaca ini bervariasi, yang umum dipakai mulai dari 5 mm, 6 mm, atau 8 mm. Pemilihan ketebalan kaca disesuaikan dengan bentang kaca yang akan dipasang. Untuk rumah tinggal dan interior gedung, biasanya digunakan kaca tebal 5 mm, 6 mm atau 8 mm tergantung bentangnya.

Gambar II.7 : Kaca Bening Sumber : http://info-bedahrumah.blogspot.co.id/2014/03/mengenal-jenis-jenis-kaca-dan.html

2. Kaca Warna

Di kalangan masyarakat, kaca ini biasa disebut dengan kaca *rayben*, untuk kaca warna hitam. Istilah teknisnya adalah *tinted glass*. Pada produk Asahimas, menggunakan istilah panasap *glass*. Kaca panasap merupakan kaca *float* yang diberi warna dengan menambahkan sedikit logam pewarna seperti kobalt, besi, silenium, dan sebagainya pada bahan baku kaca. Kaca panasap mampu menyerap 55% panas matahari, sehingga akan mengurangi beban pendingin ruangan dan memberikan rasa nyaman pada penghuni bangunan. Dengan warna kaca tersebut, maka sifat tembus pandang kaca menjadi rendah, sehingga memberikan kebebasan privasi bagi penghuni bangunan. Warna yang tersedia pada kaca panasap adalah *blue green*, *dark blue, euro grey, dark grey, bronze* dan *green*.

Gambar II.8 : Kaca Berwarna Gelap Sumber : http://info-bedahrumah.blogspot.co.id/2014/03/mengenal-jenis-jenis-kacadan.html

Kemampuan absorbing glass dan reflective glass ditentukan oleh:

1) Ketebalan kaca

Dengan warna yang sama, semakin tebal kaca, kemampuan menyerap semakin tinggi dan sebaliknya kemampuan transmisi makin rendah. Dengan warna yang sama, semakin tebal kaca maka angka *reflacance* cenderung makin rendah.

2) Warna kaca

Dengan ketebalan kaca yang sama, makin gelap warna kemampuan serap (absorption) makin tinggi dan sebaliknya kemampuan transmisi makin rendah.

Terang gelapnya warna kaca juga akan mempengaruhi kualitas view (Anonim,2017).

E. Lux meter

Lux meter atau alat ukur cahaya adalah alat yang digunakan untuk mengukur besarnya intensitas cahaya di suatu tempat. Besarnya intensitas cahaya ini perlu untuk diketahui karena pada dasarnya manusia juga memerlukan penerangan yang cukup. Untuk mengetahui besarnya intensitas cahaya ini maka diperlukan sebuah sensor yang cukup peka dan linier terhadap cahaya. Sehingga cahaya yang diterima oleh sensor dapat diukur dan ditampilkan pada sebuah tampilan digital (Puspitasari, 2013).

Gambar II.9 : Lux Meter Sumber : https://www.google.com/search

Sensor cahaya dari lux meter di arahkan pada titik permukaan daerah yang akan diukur kuat penerangannya. Nilai pencahayaan (lux) yang terlalu rendah akan berpengaruh terhadap proses akomodasi mata yang terlalu tinggi, sehingga akan berakibat terhadap kerusakan retina pada mata. Upaya pencahayaan agar memenuhi persyaratan kesehatan perlu dilakukan tindakan, seperti pencahayaan alam maupun buatan diupayakan agar tidak menimbulkan kesilauan dan memiliki intensitas sesuai dengan peruntukannya (Sahilatua, 2013).

1. Prinsip Kerja

Lux meter merupakan alat ukur yang digunakan untuk mengukur kuat penerangan (tingkat penerangan) pada suatu area atau daerah tertentu. Alat ini didalam memperlihatkan hasil pengukurannya menggunakan format digital. Alat ini terdiri dari rangka, sebuah sensor dengan sel foto dan layar panel. Sensor tersebut diletakan pada sumber cahaya yang akan diukur intenstasnya. Cahaya akan menyinari sel foto sebagai energi yang diteruskan oleh sel foto menjadi arus listrik. Makin banyak cahaya yang diserap oleh sel, arus yang dihasilkan pun semakin besar.

Sensor yang digunakan pada alat ini adalah photo diode. Sensor ini termasuk ke dalam jenis sensor cahaya atau optik. Sensor cahaya atau optik adalah sensor yang mendeteksi perubahan cahaya dari sumber cahaya, pantulan cahaya ataupun bias cahaya yang mengenai suatu daerah tertentu. Kemudian dari hasil pengukuran yang dilakukan akan ditampilkan pada layar panel (Muchamad pamungkas, 2015 : hal. 2).

Adapun bagian- bagian dari alat lux meter adalah sebagai berikut :

Gambar II.10: Lux Meter

Sumber: https://www.google.com/search

Fungsi bagian-bagian alat ukur:

Layar panel : Menampilkan hasil pengukuran

Tombol Off/On: Sebagai tombol untuk menyalakan atau mematikan alat

Tombol Range: Tombol kisaran ukuran

Zero Adjust VR: Sebagai pengkalibrasi alat (bila terjadi error)

Sensor cahaya : Alat untuk mengkoreksi/mengukur cahaya.

2. Prosedur Penggunaan Alat

Dalam mengoperasikan atau menjalankan lux meter amat sederhana. Tidak serumit alat ukur lainnya, dalam penggunaannya yang harus benar-benar diperhatikan adalah alat sensornya, karena sensornyalah yang akan mengukur kekuatan penerangan suatu cahaya. Oleh karena itu sensor harus ditempatkan pada daerah yang akan diukur tingkat kekuatan cahayanya (iluminasi) secara tepat agar hasil yang ditampilkan pun akuarat. Adapun prosedur penggunaan alat ini adalah sebagai berikut:

- 1. Geser tombol "off/on" kearah On.
- 2. Pilih kisaran range yang akan diukur (2.000 lux, 20.000 lux atau 50.000 lux) pada tombol Range.
- 3. Arahkan sensor cahaya dengan menggunakan tangan pada permukaan daerah yang akan diukur kuat penerangannya.
- 4. Lihat hasil pengukuran pada layar panel.

Hal- hal yang harus diperhatikan dalam perawatan alat ini adalah sensor cahaya yang bersifat amat sensitif. Dalam perawatannya sensor ini harus diamankan pada temapat yang aman sehingga sensor ini dapat terus berfungsi dengan baik karena sensor ini merupakan komponen paling vital pada alat ini.

Selain dari sensor, yang harus diperhatikan pada alat ini pun adalah baterainya. Jikalau pada layar panel menunjukan kata "LO BAT" berarti baterai yang digunakan harus diganti dengan yang baru. Untuk mengganti baterai dapat dilakukan dengan membuka bagian belakang alat ini (lux meter) kemudian mencopot baterai yang habis ini, lalu menggantinya dengan yang dapat digunakan. Baterai yang digunakan pada alat ini adalah baterai dengan tegangan 9 volt, tetapi untuk tegangan beterai ini tergantung pada spesifikasi alatnya.

Apabila hasil pengukuran tidak seharusnya terjadi, sebagai contoh diruangan yang dengan kekuatan cahaya normal setelah dilakukan pengukuran ternyata hasilnya tidak normal maka dapat dilakukan pengkalibrasian ulang dengan menggunakan tombol "Zero Adjust".

3. Cara Pembacaan

Pada tombol range ada yang dinamakan kisaran pengukuran. Terdapat 3 kisaran pengukuran yaitu 2000, 20.000, 50.000 (lux). Hal tersebut menunjukan kisaran angka (batasan pengukuran) yang digunakan pada pengukuran. Memilih 2000 lux, hanya dapat dilakukan pengukuran pada kisaran cahaya kurang dari 2000 lux. Memilih 20.000 lux, berarti pengukuran hanya dapat dilakukan pada kisaran 2000 sampai 1990 (lux). Memilih 50.000 lux, berarti pengukuran dapat dilakukan pada kisaran 20.000 sampai dengan 50.000 lux. Jika Ingin mengukur tingkat kekuatan cahaya alami lebih baik baik menggunakan pilihan 2000 lux agar hasil pengukuran yang terbaca lebih akurat. Spesifikasi ini, tergantung kecanggihan alat.

BAB III

METODE PENELITIAN


A. Waktu dan Tempat Penelitian

Penelitian ini telah dilakukan pada tanggal 04 Februari – 23 Juli 2017 di Rusunawa (Rumah susun sewa) kampus 2 UIN Alauddin Makassar Kelurahan Samata Kec. Somba Opu Kab. Gowa.

B. Alat dan Bahan

Di dalam penelitian alat dan bahan yang digunakan adalah :

1. Jendela.

Gambar III.1: (a.) Jendela kaca hitam (b.) jendela kaca bening Sumber: Dokumen Pribadi

- 2. Lakban.
- 3. Lux meter (2 unit).
- 4. Rol Meteran.
- 5. Tripleks.

C. Metode Pengambilan Data

Langkah-langkah yang digunakan untuk mengambil data dalam penelitian ini adalah sebagai berikut:

- 1. Menyiapkan alat dan bahan.
- 2. Mengukur (panjang x lebar) ukuran jendela I (140 x 80) cm² untuk kaca bening.
- **3.** Menutup bagian jendela yang tidak digunakan dengan tripleks menggunakan lakban.
- 4. Mengukur intensitas pencahayaan di luar ruangan dengan Lux meter.
- **5.** Kemudian mencatat hasil pembacaan pada Lux meter pada tabel pengamatan.
- **6.** Kemudian mengukur intensitas pencahayaan di dalam ruang dengan Lux meter dengan jarak lux meter dari jendela 100 cm dengan tinggi lux meter dari lantai 75 cm.
- 7. Kemudian mencatat hasil pembacaan pada Lux meter pada tabel pengamatan.
- **8.** Melakukan perlakuan yang sama pada ukuran jendela II (140 x 60) cm², jendela III (130 x 70) cm², jendela IV (120 x 70) cm², dan jendela V (110 x 70) cm².
- **9.** Kemudian melakukan perlakuan yang sama (6 9) pada jendela hitam dengan ukuran yang sama.

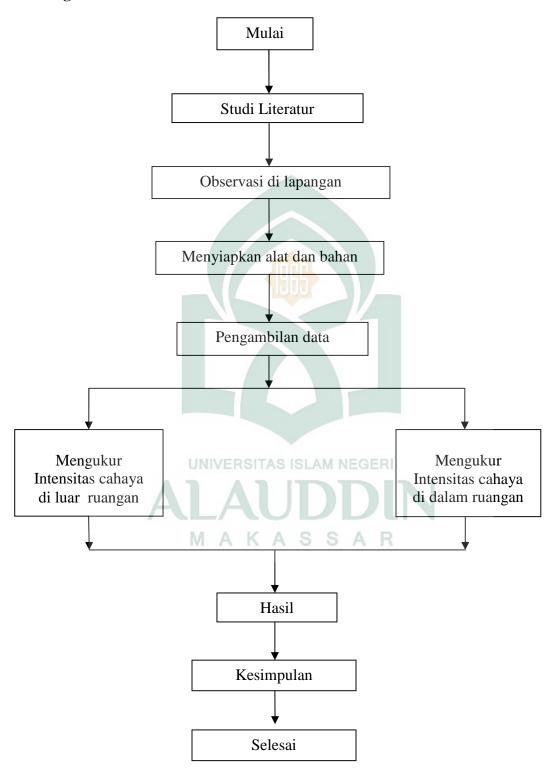
Tabel III: Nilai intensitas pencahayaan pada ruang

Orientasi /arah jendela : Barat/timur

Intensitas di luar ruangan:

Ukuran ruangan :

Jenis kaca :


		Intensitas Pencahayaan (lux)					
No	Pukul	Jendel a I	Jendel a II	Jendel a III	Jendel a IV	Jendel a V	
1	08:00		linen				
2	09:00	W/	1 Him				
3	10:00			-//			
4	14:00						
5	15:00						
6	16:00						

D. Analisis data

Data yang diperoleh dari tabel hasil pengamatan akan di sajikan dalam bentuk grafik dengan menggunakan Microsoft Excel.

MAKASSAR

E. Diagram Alir

BAB IV

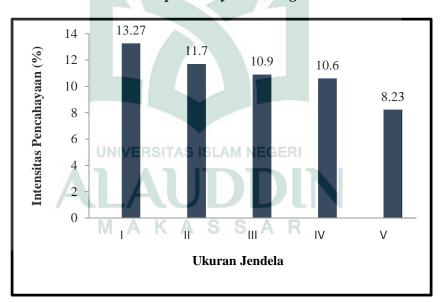
HASIL DAN PEMBAHASAN

A. Pengaruh Ukuran dan Arah Jendela Terhadap Intensitas Pencahayaan Ruang

Telah dilakukan penelitian di Rusunawa (Rumah Susun Sewa) kampus 2 UIN Alauddin Makassar Kelurahan Samata Kec. Somba Opu Kab. Gowa, dengan menggunakan dua sampel yaitu jendela kaca bening dengan jendela kaca hitam dengan ketebalan masing-masing 5 mm dengan ukuran ruang yang digunakan berukuran 4 x 3 m² dengan warna tembok putih dan jarak lux meter dari jendela yaitu 100 cm dan tinggi lux meter dari lantai yaitu 75 cm sesuai dengan anjuran SNI berdasarkan aktivitas berdiri dan ketinggian duduk .

Penelitian ini dilakukan pada dua waktu yaitu pagi ketika matahari condong ke arah timur mulai pukul 08.00-10.00 Wita dan sore ketika matahari condong ke arah barat mulai pukul 14.00-16.00 Wita setiap satu jam menggunakan alat ukur lux meter dengan ukuran jendela hasil survei di lapangan yang digunakan yaitu:

Tabel IV: Ukuran Jendela Hasil Survei

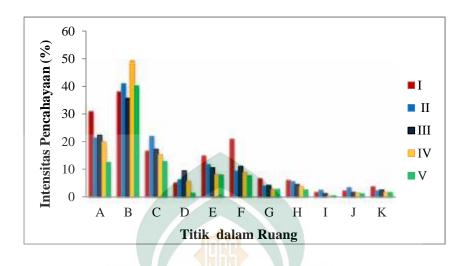

	Ukuran							
Jenis Kaca	Jendela I	Jendela II	Jendela III	Jendela IV	Jendela V			
Bening	$(140 \times 80) \text{ cm}^2$	$(140 \times 60) \text{ cm}^2$	$(130 \times 70) \text{ cm}^2$	$(120 \times 70) \text{ cm}^2$	$(110 \times 70) \text{ cm}^2$			
Hitam	$(140 \times 80) \text{ cm}^2$	$(140 \times 60) \text{ cm}^2$	$(130 \times 70) \text{ cm}^2$	$(120 \times 70) \text{ cm}^2$	$(110 \times 70) \text{ cm}^2$			

Penelitian ini dilakukan pada 11 titik yang tersebar dalam ruang, dari titik terdekat dengan sumber cahaya sampai titik terjauh dari sumber cahaya yang diberi simbol A, B, C, D, E, F, G, H, I, J, dan K untuk melihat pengaruh ukuran dan arah jendela terhadap cahaya yang masuk dalam ruangan yang sesuai standar minimum, dan data hasil penelitian lebih lengkap dapat dilihat pada lampiran 1 yang telah diperoleh.

1. Kaca Bening

a. Ukuran jendela

IV.1 Grafik hubungan antara uku<mark>ran da</mark>n arah timur jendela bening terhadap intensitas pencahayaan ruang



Iluminasi atau intensitas pencahayaan adalah kepadatan suatu berkas cahaya yang mengenai suatu permukaan. Pengukuran intensitas pencahayaan menggunakan matahari sebagai sumber cahaya alami berdasarkan ukuran jendela memberikan pengaruh terhadap cahaya yang masuk pada suatu titik di dalam

ruangan (E_i (lux)) terhadap iluminasi horizontal di lapangan terbuka di luar ruangan (E_o (lux)) pada saat yang sama yang dinyatakan dengan persen (%). Terlihat pada grafik IV.1 yang menunjukkan hubungan antara ukuran jendela bening terhadap intensitas pencahayaan ruang menunjukkan nilai yang paling tinggi pada ukuran jendela I (140 x 80) cm² dengan nilai 13,27 % disusul oleh ukuran jendela ukuran jendela II (140 x 60) cm² dengan nilai 11,7 %, III (130 x 70) cm² dengan nilai 10,9 %, jendela IV (120 x 70) cm² dengan nilai 10,6 %, dan ukuran jendela V (110 x 70) cm² dengan nilai 8,23 % dimana semakin besar ukuran jendela maka intensitas pencahayaan yang masuk juga bernilai besar dan sebaliknya semakin kecil ukuran jendela maka intensitas pencahayaan masuk bernilai kecil.

Menurut SNI pencahayaan alami pada siang hari dapat dikatakan baik apabila pada pukul 08.00-16.00 waktu setempat terdapat cukup banyak sinar matahari yang masuk ke dalam ruangan. Pada hasil penelitian kaca bening memberikan tingkat transmisi lebih dari 90% dengan intensitas pencahayaan yang sesuai dengan SNI yaitu ukuran jendela I (140 x 80) cm² dengan nilai 137,49 lux, ukuran jendela II (140 x 60) cm² dengan nilai 150,35 lux, III (130 x 70) cm² dengan nilai 138,29 lux, dan ukuran jendela IV (120 x 70) cm² dengan nilai 120,74 lux dimana tingkat intensitas cahaya yang dianjurkan berdasarkan SNI-03-6197-2000 antara 120 – 250 lux untuk ruang beraktivitas (ruang tamu, ruang makan, ruang kerja dan ruang tidur).


IV.2. Grafik hubungan antara ukuran jendela kaca bening arah timur terhadap titik dalam ruang

Tingkat transmisi cahaya dari material adalah kemampuan suatu material untuk meloloskan sejumlah cahaya yang diterimanya. Semakin tinggi tingkat transmisinya, maka semakin banyak cahaya yang akan diteruskan dan tingkat absorbsinya juga semakin meningkat, demikian sebaliknya semakin rendah tingkat transmisinya, maka semakin kecil cahaya yang diteruskan dan tingkat absorbsinya juga semakin rendah. Pada grafik IV.2 menunjukkan hubungan antara ukuran jendela kaca bening arah timur tehadap 11 titik yang tersebar dalam ruang ini menunjukkan, dari titik terdekat dengan sumber cahaya sampai titik terjauh dari sumber cahaya dengan hasil titik B lebih tinggi dikemudian diikuti oleh A, C, E, F, D, G, H, K, J dan yang terendah pada titik I, hal ini disebabkan oleh jendela kaca bening arah timur memiliki tingkat pencahayaan tinggi pada pagi hari maka penyebaran cahaya dalam ruang yang menunjukkan bahwa semakin dekat dengan sumber cahaya maka nilai intensitas pencahayaannya semakin besar dan sebaliknya

semakin jauh titik penyebaran cahaya maka akan semakin kecil nilai intensitas pencahayaan yang diperoleh.

IV.3 Grafik hubungan antara ukuran jendela bening terhadap intensitas pencahayaan ruang pada arah barat

Pada grafik IV.3 menunjukkan bahwa ukuran jendela mempengaruhi intensitas pencahayaan yang masuk dalam ruangan hubungan antara ukuran jendela UNIVERSITAS ISLAM NEGERI bening terhadap intensitas pencahayaan ruang menunjukkan nilai yang paling tinggi pada ukuran jendela I (140 x 80) cm² dengan nilai 5,47 % disusul oleh ukuran jendela IV (120 x 70) cm² dengan nilai 5,44 % , jendela III (130 x 70) cm² dengan nilai 3,82 %, jendela II (140 x 60) cm² dengan nilai 3,09 %, dan ukuran jendela V (110 x 70) cm² dengan nilai 3,06 %. Menurut SNI pencahayaan alami pada siang hari dapat dikatakan baik apabila pada pukul 08.00-16.00 waktu setempat terdapat cukup banyak sinar matahari yang masuk ke dalam ruangan. Pada hasil penelitian kaca bening memberikan tingkat transmisi lebih dari 90% dengan intensitas pencahayaan

yang sesuai dengan SNI pada jendela kaca bening arah barat yaitu ukuran jendela I (140 x 80) cm² dengan nilai 141,01 lux. tingkat intensitas cahaya yang dianjurkan berdasarkan SNI-03-6197-2000 antara 120 – 250 lux untuk ruang beraktivitas (ruang tamu, ruang makan, ruang kerja dan ruang tidur).

40 35 Intensitas Pencahayaan (%) 30 ■ I 25 II 🔳 20 15

Titik dalam Ruang

10 5

C

D

IV

IV.4. Grafik hubungan antara ukuran jendela kaca bening arah barat terhadap titik dalam ruang

Tingkat transmisi cahaya dari material adalah kemampuan suatu material untuk meloloskan sejumlah cahaya yang diterimanya. Semakin tinggi tingkat transmisinya, maka semakin banyak cahaya yang akan diteruskan dan tingkat absorbsinya juga semakin meningkat, demikian sebaliknya semakin rendah tingkat transmisinya, maka semakin kecil cahaya yang diteruskan dan tingkat absorbsinya juga semakin rendah. Pada grafik IV.4 menunjukkan hubungan antara ukuran jendela kaca bening arah barat tehadap 11 titik yang tersebar dalam ruang, dari titik terdekat dengan sumber cahaya sampai titik terjauh dari sumber cahaya dengan hasil titik A lebih tinggi kemudian diikuti oleh B, C, F, G, D, E H, I, J, dan yang terendah pada titik K, hal ini disebabkan oleh jendela kaca bening arah barat memiliki tingkat pencahayaan tinggi pada siang hari maka penyebaran cahaya dalam ruang yang menunjukkan bahwa semakin dekat dengan sumber cahaya maka nilai intensitas pencahayaannya semakin besar dan sebaliknya semakin jauh titik penyebaran cahaya maka akan semakin kecil nilai intensitas pencahayaan yang diperoleh.

b. Arah Jendela

Perbandingan arah jendela timur dan barat pada grafik IV.1 dan grafik IV.3 menunjukkan hubungan antara ukuran dan arah jendela bening terhadap intensitas pencahayaan ruang, bahwa arah memberikan pengaruh terhadap intensitas yang masuk di dalam ruangan terlihat dengan persentasi yang diperoleh pada arah timur universitas isam pengaruh terhadap intensitas yang lebih tinggi dari pada arah menghadap barat ini sesuai dengan teori bahwa arah timur dan barat memilki rentan waktu yang sama untuk menyediakan tingkat pencahayaan yang sedang, namun menghasilkan cahaya yang sangat baik, arah ke timur menghasilkan cahaya yang dengan intensitas tinggi pada pagi hari, sedangkan arah ke barat menghasilkan intensitas yang tinggi pada siang hari. Memiliki energi yang tinggi pada musim panas dan rendah pada musim dingin. arah timur-barat secara umum akan memberikan dampak yang sama, walaupun terjadi dalam waktu yang berbeda pada hari yang sama. Namun, pada hasil penelitian ini mengalami hasil yang

sesuai pada arah timur sedangkan pada arah barat mengalami nilai yang fluktuatif disebabkan karena cahaya yang memenuhi ruang tidak maksimal pada ukuran jendela.

Arah bangunan terhadap matahari akan menentukan besarnya radiasi matahari yang diterima bangunan. Semakin luas bidang yang menerima radiasi matahari secara langsung, semakin besar juga panas yang diterima bangunan. Lintasan matahari akan menentukan arah bangunan dan letak bukaan jendela Allah swt. menjelaskan dalam Q.S. Al-Kahfi (18) 17:

Terjemahnya:

Dan kamu akan melihat matahari ketika terbit, condong dari gua mereka ke sebelah kanan, dan bila matahari terbenam menjauhi mereka ke sebelah kiri sedang mereka berada dalam tempat yang luas dalam gua itu. Itu adalah sebagian dari tanda-tanda (kebesaran) Allah. Barang siapa yang diberi petunjuk oleh Allah, maka dialah yang mendapatkan petunjuk dan barang siapa yang disesatkan-Nya maka kamu tak akan mendapatkan seorang pemimpinpun yang dapat memberi petunjuk kepadanya. (Kementrian Agama RI, 2012: 295).

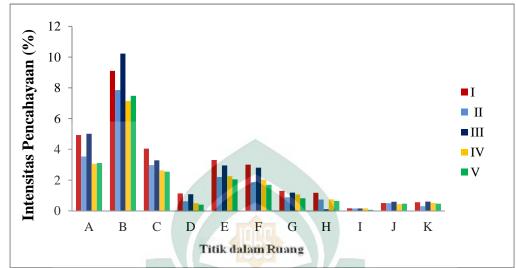
Ayat ini menjelaskan tentang posisi dari gua yang ditempati oleh para pemuda Al-kahfi yang di mana pintu menghadap ke Utara karena ketika matahari terbit akan (condong) atau maka bayang-bayang dari sinar matahari itu berada disebelah kanan dan ketika matahari terbenam maka bayang-bayang dari sinar matahari itu berada di sebelah kiri. Sedang mereka berada di tempat yang luas dalam gua tersebut itu adalah sebagian dari tanda-tanda kebesaran Allah swt. yang telah mengarahkan mereka menuju ke gua tersebut yang di dalamnya diberikan kehidupan sedang matahari dan

angin dapat dengan leluasa masuk sehingga mereka dapat terpelihara dengan fisik yang tetap utuh. Ayat ini juga menjelaskan ketika Allah sudah memberikan petunjuk kepada seseorang untuk mengamalkan tuntunannya maka petunjuk tersebut untuknya, dan barangsiapa yang tidak mau menerima petunjuk-Nya dan mengamalkan tuntunan-Nya maka dia tidak akan menemukan seorang pemimpin sekalipun yang dapat memberikan petunjuk (Shihab, 2002: h. 26-28).

2. Kaca Hitam

a. Ukuran Jendela

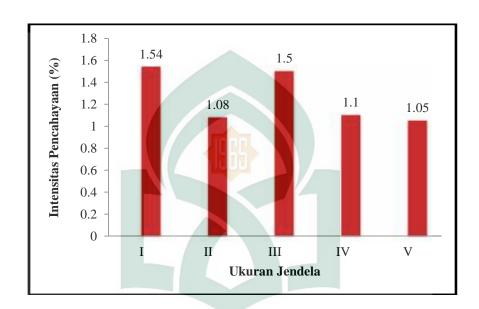
IV.5 Grafik hubungan antara uk<mark>uran j</mark>endela hitam terhadap intensitas pencahayaan ruang pada arah timur


Iluminasi atau intensitas pencahayaan adalah kepadatan suatu berkas cahaya yang mengenai suatu permukaan. Pengukuran intensitas pencahayaan menggunakan matahari sebagai sumber cahaya alami berdasarkan ukuran jendela memberikan pengaruh terhadap cahaya yang masuk pada suatu titik di dalam

ruangan (E_i (lux)) terhadap iluminasi horizontal di lapangan terbuka di luar ruangan (E_o (lux)) pada saat yang sama yang dinyatakan dengan persen (%). Terlihat pada grafik IV.5 yang menunjukkan hubungan antara ukuran jendela hitam terhadap intensitas pencahayaan ruang menunjukkan nilai persentasi jendela yaitu jendela I (140 x 80) cm² dengan nilai 2,66 %, jendela III (130 x 70) cm² dengan nilai 2,54 %, jendela II (140 x 60) cm² dengan nilai 1,97 %, jendela IV (120 x 70) cm² dengan nilai 1,87 % dan jendela V (110 x 70) cm² dengan nilai 1,79 % dimana semakin besar ukuran jendela maka intensitas pencahayaan yang masuk juga bernilai besar dan sebaliknya semakin kecil ukuran jendela maka intensitas pencahayaan masuk bernilai kecil.

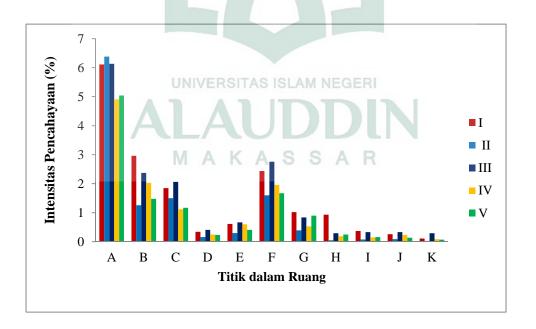
Menurut SNI pencahayaan alami pada siang hari dapat dikatakan baik apabila pada pukul 08.00-16.00 waktu setempat terdapat cukup banyak sinar matahari yang masuk ke dalam ruangan. Pada hasil penelitian kaca hitam memberikan tingkat transmisi lebih dari 55% Pada hasil penelitian menunjukkan ukuran jendela dengan hasil yang fluktuatif disebabkan faktor cuaca yang begitu cepat berubah. Pencahayaan yang sesuai dengan SNI dimana tingkat intensitas cahaya yang dianjurkan berdasarkan SNI-03-6197-2000 antara 120 – 250 lux untuk ruang beraktivitas (ruang tamu, ruang makan, ruang kerja dan ruang tidur) pada jendela kaca hitam arah timur yang tidak ada yang memenuhi standar minimum sesuai dengan SNI.

IV.6 Grafik hubungan antara ukuran jendela kaca hitam arah barat terhadap titik dalam ruang


Tingkat transmisi cahaya dari material adalah kemampuan suatu material

untuk meloloskan sejumlah cahaya yang diterimanya. Semakin tinggi tingkat transmisinya, maka semakin banyak cahaya yang akan diteruskan dan tingkat absorbsinya juga semakin meningkat, demikian sebaliknya semakin rendah tingkat transmisinya, maka semakin kecil cahaya yang diteruskan dan tingkat absorbsinya juga semakin rendah. Pada grafik IV.6 menunjukkan hubungan antara ukuran jendela kaca bening arah timur tehadap 11 titik yang tersebar dalam ruang, dari titik terdekat dengan sumber cahaya sampai titik terjauh dari sumber cahaya dengan hasil titik B lebih tinggi kemudian diikuti oleh A, C, E, F, G, H, D, K, J dan yang terendah pada titik I, hal ini disebabkan oleh jendela kaca hitam arah timur memiliki tingkat pencahayaan tinggi pada pagi hari dengan tingkat transmisi lebih dari 55% maka penyebaran cahaya dalam ruang yang menunjukkan bahwa semakin dekat dengan sumber cahaya maka nilai intensitas pencahayaannya semakin besar dan

sebaliknya semakin jauh titik penyebaran cahaya maka akan semakin kecil nilai intensitas pencahayaan yang diperoleh.


IV.7 Grafik hubungan antara ukuran jendela hitam terhadap intensitas pencahayaan ruang pada arah barat

Pengukuran intensitas pencahayaan berdasarkan ukuran jendela memberikan UNIVERSITAS ISLAM NEGERI pengaruh terhadap cahaya yang masuk di dalam ruang dimana semakin besar ukuran jendela maka intensitas cahaya yang masuk juga bernilai besar. Terlihat pada grafik IV.7 yang menunjukkan hubungan antara ukuran jendela hitam terhadap intensitas pencahayaan ruang yang masuk menunjukkan nilai persentasi jendela yaitu jendela I (140 x 80) cm² dengan nilai 1,54 %, jendela, jendela III (130 x 70) cm² dengan nilai 1,5 %, jendela IV (120 x 70) cm² dengan nilai 1,1 %, II (140 x 60) cm² dengan nilai 1,08 %, dan jendela V (110 x 70) cm² dengan nilai 1,05 %. Menurut SNI pencahayaan alami pada siang hari dapat dikatakan baik apabila pada pukul

08.00-16.00 waktu setempat terdapat cukup banyak sinar matahari yang masuk ke dalam ruangan. Pada hasil penelitian menunjukkan ukuran jendela dengan hasil yang fluktuatif disebabkan faktor cuaca yang begitu cepat berubah bahwa menurut Pencahayaan yang sesuai dengan SNI dimana tingkat intensitas cahaya yang dianjurkan berdasarkan SNI-03-6197-2000 antara 120 – 250 lux untuk ruang beraktivitas (ruang tamu, ruang makan, ruang kerja dan ruang tidur) pada jendela kaca hitam arah barat tidak ada yang memenuhi standar minimum sesuai dengan SNI karena rendahnya tingkat transmisi jendela kaca hitam yang hanya 55%.

IV.8 Grafik hubungan antara uku<mark>ran jen</mark>dela kaca hitam arah barat terhadap titik dalam ruang


Tingkat transmisi cahaya dari material adalah kemampuan suatu material untuk meloloskan sejumlah cahaya yang diterimanya. Semakin tinggi tingkat transmisinya,

maka semakin banyak cahaya yang akan diteruskan dan tingkat absorbsinya juga semakin meningkat, demikian sebaliknya semakin rendah tingkat transmisinya, maka semakin kecil cahaya yang diteruskan dan tingkat absorbsinya juga semakin rendah. Pada grafik IV.8 menunjukkan hubungan antara ukuran jendela kaca bening arah timur tehadap 11 titik yang tersebar dalam ruang, dari titik terdekat dengan sumber cahaya sampai titik terjauh dari sumber cahaya dengan hasil titik A lebih tinggi kemudian diikuti oleh B, F, C, G, E, D, H, I, J, dan yang terendah pada titik K, hal ini disebabkan oleh jendela kaca hitam arah barat memiliki tingkat pencahayaan tinggi pada siang hari dengan tingkat transmisi lebih dari 55% maka penyebaran cahaya dalam ruang yang menunjukkan bahwa semakin dekat dengan sumber cahaya maka nilai intensitas pencahayaannya semakin besar dan sebaliknya semakin jauh titik penyebaran cahaya maka akan semakin kecil nilai intensitas pencahayaan yang diperoleh.

b. Arah Jendela

Perbandingan arah jendela timur dan barat pada grafik IV.5 dan grafik IV.7 menunjukkan hubungan antara ukuran dan arah jendela kaca hitam terhadap intensitas pencahayaan ruang, bahwa arah memberikan pengaruh terhadap intensitas yang masuk di dalam ruangan terlihat dengan persentasi yang di peroleh pada arah timur lebih tinggi dari pada arah menghadap barat ini sesuai dengan teori bahwa arah timur dan barat memilki rentan waktu yang sama untuk menyediakan tingkat penerangan yang sedang, namun menghasilkan cahaya yang sangat baik, arah ke timur menghasilkan cahaya yang dengan intensitas tinggi pada pagi hari, sedangkan

arah ke barat menghasilkan intensitas yang tinggi pada siang hari. Memiliki energi yang tinggi pada musim panas dan rendah pada musim dingin. arah timur-barat secara umum akan memberikan dampak yang sama, walaupun terjadi dalam waktu yang berbeda pada hari yang sama

BAB V

PENUTUP

A. Kesimpulan

Berdasarkan hasil penelitian dapat disimpulkan bahwa ukuran dan arah jendela mempengaruhi banyaknya intensitas cahaya yang masuk dalam ruang. Ukuran dan arah jendela yang sesuai dengan standar minimum SNI yaitu hanya pada jendela bening dengan arah jendela timur (140 x 80) cm² dengan nilai 137,49 lux, ukuran jendela (140 x 60) cm² dengan nilai 150,35 lux, ukuran jendela (130 x 70) cm² dengan nilai 138,29 lux, dan ukuran jendela (120 x 70) cm² dengan nilai 120,74 lux dan jendela bening arah barat yang memenuhi yaitu ukuran jendela (140 x 80) cm² dengan nilai 141,01 lux.

B. Saran

Setelah melakukan penelitian maka dapat disarankan hal-hal sebagai berikut :

- Sebaiknya peneliti selanjutnya menggunakan ruangan lebih luas, menggunakan ukuran jendela yang lebih dari satu dalam satu ruangan, dengan posisi yang bervariasi.
- 2. Sebaiknya peneliti selanjutnya menggunakan arah utara dan selatan sebagai perbandingan agar lebih bervariasi data yang diperoleh.

DAFTAR PUSTAKA

- Al-Qur'anul Karim.
- Ade, Jackobus. 2011. "Evaluasi Performa Ventilasi Alami Pada Desain Bukaan Ruang Kelas Universitas Atma Jaya Yogyakarta". Yogyakarta: Universitas Atma Jaya.
- Ashari dan ikhwanudin. 2012. "Jurnal Kajian Terhadap Kenyamanan Ruang Teori Di Fakultas Teknik Universitas Negeri Yogyakarta Di Tinjau Dari Pencahayaan Alami Dan Pencahayaan Campuran". Yogyakarta: Universitas Negeri Yogyakarta. h.4.
- Ashita, Nirmala. 2014. "Dominasi Pencahayaan Alami Sebagai Dasar Rancangan Galeri Kerajinan Kalimantan Timur Di Samarinda". Malang: Universitas Brawijaya.
- Baharuddin, dkk. 2011. "Pengaruh Bukaan Jendela Terhadap Penetrasi Cahaya Alami Dan Radiasi Matahari dalam Ruangan". Makassar: Fakultas Teknik Universitas Hasanuddin Makassar.
- Baharuddin. 2011. "Aplikasi Simulasi Computer Dalam Upaya Meningkatkan Kualitas Pencahayaan Alami Bangunan". Makassar: Universitas Hasanuddin.
- Bebhi, Adila susanti dkk. 2014. "Pengaruh Fasade Bangunan Terhadap Pencahayaan Alami Pada Laboratorium Politeknik Negeri Malang". Malang: Universitas Brawijaya. VERSITAS ISLAM NEGERI
- Dahniar dan andi asmulyani. 2013. "Tipologi Bentuk Jendela Pada Rumah Tradisonal Bugis di Taman Miniature Sulawesi Selatan, Benteng Somba Opu Makassar", Makassar: Universitas Hasanuddin.
- Daryanto Firza utama S. 2012. "Jendela Hemat Energi Pada Fasade Rumah Susun di Jakarta". Jakarta: Binus Universitas.
- Daryanto. 1997. "Fisika Teknik". Jakarta: Rineka Cipta. h. 226
- Dinulfy, Lasty dkk. 2014. "Tingkat Pencahayaan Alami Pada Rumah Susun Studi Kasus Rusunawa Mariso". Makassar: Universitas Hasanuddin.
- Esa dora, Purnama. 2011. "Optimasi Desain Pencahayaan Ruang Kelas SMA Santa Maria Surabaya", Surabaya: universitas Kristen petra.

- Gunawan, Ryani. 2014. "Studi Pengembangan Rancangan Bukaan Pencahayaan Pada Pipa Cahaya Horisontal". Dempasar: Universitas Katolik Parahyangan.
- Juddah, dkk, 2013. "Pengaruh Orientasi Dan Luas Bukaan Terhadap Intensitas Pencahayaan Pada Ruang Laboratorium". Makassar: Fakultas Teknik Universitas Hasanuddin Makassar.
- Hamka. 1988. "Tafsir Al-Azhar juz' 30". Jakarta: Pustaka Panjimas. h. 172-173
- Ibnu Katsir, Al-imam. 2000. " *Tafsir Ibnu Katsir Juz 30 Surat An-Naba'-An-Naas* ". Bandung: Sinar Baru Algesindo.
- Kementrian Agama RI. 2012. "Mushaf Aisyah Al-Qur'an dan Terjemah untuk Wanita". Jakarta: Jabal.
- Manurung, Parmonangan. 2012. "*Pencahayaan Alami dalam Arsitektur*". Yogyakarta: Penerbit Andi. h. 69-72.
- Nur Huda, Adhityo. 2014. "Optimalisasi Bukaan Depan Guna Pencahayaan Alami Pada Ruko Sebagai Fungsi Kantor". Jakarta: Universitas Mercu Buana.
- Nurul huda, Arina. 2012. "Analisis Intensitas Pencahayaan Pada Bidang Kerja Terhadap Berbagai Warna Ruangan". Makassar : Universitas Hasanuddin.
- Norbert lechner. 1968. "Heting Cooling Lighting: Design Method For Architects". Canada: john wiley & sons, inc. h. 372
- Pasya, Ahmad Fuad. 2004. "Dimensi Sains Al-Qur'an". Solo: Tiga Serangkai. h. 101
- Prianto, eddy. 2013. "Pilihan Bentuk Tritisan Hemat Energi Untuk Kota Semarang". Semarang: Universitas Diponegoro.
- Puspitasari, Rini. 2013. "Skripsi Pengaruh Warna Dinding Terhadap Intensitas Pencahayaan Dalam Ruang". Makassar: UIN Alauddin Makassar.

STANDAR SNI 03-0675-1989

STANDAR SNI-03-6197-2000

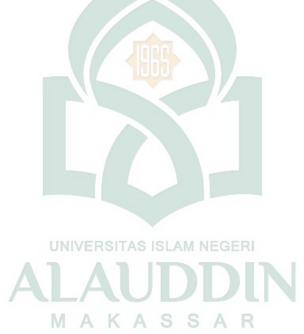
- Shihab, M. Quraish, 2002. "Tafsir Al- Misbah". Jakarta: Lentera Hati. h. 10-11
- Subkiman, Anwar.2013. "Pemanfaatan Pencahayaan Siang Pada Interior Gedung Kampus PT Dahana Sebagai Strategi Penerapan Prinsip Bangunan Berkelanjutan". Bandung: Kampus PT Dahana.

Suprapto dan sodikin. 2014. "Daylighting Untuk Perumahan Sederhana". Yogyakarta: Universitas Veteran Bangun Nusantara.

Sutrisno. 1979. "Fisika Dasar dan Optik". Bandung: Badan Penerbit ITB. h. 146-148

Young dan Freedman. 2003. "Fisika Universitas Edisi Kesepuluh Jilid 2". Jakarta: Penerbit Erlangga, h.668.

Young dan Freedman.1996. "Fisika Universitas". Jakarta: Penerbit Erlangga. h. 496-497



LAMPIRAN

LAMPIRAN 1 DATA HASIL PENELITIAN

LAMPIRAN 2 DOKUMENTASI FOTO

LAMPIRAN 3 DOKUMENTASI SURAT KETERANGAN

1. JENDELA KACA BENING ARAH TIMUR

									Intensita	s Pencahaya	aan (Lux)						
			Jendel	a I (140 X 8	0) cm ²	Jendela	a II (140 X 6	0) cm ²	Jendela	III (130 X	70) cm ²	Jendela	IV (120 X 7	70) cm ²	Jendela	a V (110 X 7	0) cm ²
No.	Titik	Pukul	luar ruangan (lux)	dalam ruangan (lux)	%	luar ruangan (lux)	dalam ruangan (lux)	%	luar ruangan (lux)	dalam ruangan (lux)	%	luar ruangan (lux)	dalam ruangan (lux)	%	luar ruangan (lux)	dalam ruangan (lux)	%
1		8	760	548	72.10	5420	706	13.02	740	368	49.73	990	440	44.45	970	181	18.66
2		9	7920	163	2.06	2930	1456	49.69	6910	770	11.14	4860	1265	26.03	3450	242	7.01
3		10	7920	567	7.16	1580	165	10.44	7930	347	4.37	1110	117	10.54	1130	127	11.24
4	A	14	680	160	23.53	1050	127	12.09	650	87	13.38	550	59	10.73	570	73	12.81
5		15	460	188	40.87	260	58	22.31	470	163	34.68	310	48	15.48	300	35	11.67
6		16	670	256	38.21	230	45	19.56	710	141	19.86	170	19	11.18	310	40	12.90
7		rata- rata	3068.34	313.67	30.65	1911.67	426.17	21.19	2901.67	312.67	22.19	1331.67	324.67	19.73	1121.67	116.34	12.38
8		8	760	80	10.53	5420	488	9.003	740	65	8.78	990	792	80.00	970	696	71.75
9		9	7920	63	0.79	2930	933	31.84	6910	635	9.19	4860	1491	30.68	3450	750	21.74
10		10	7920	1081	13.65	1580	808	51.14	7930	332	4.19	1110	306	27.57	1130	445	39.38
11	В	14	680	412	60.59	1050	436	41.52	650	344	52.92	550	187	34.00	570	224	39.30
12		15	460	385	83.69	260	142	54.61	470	367	78.08	310	285	91.93	300	112	37.34
13		16	670	383	57.16	230	128	55.65	710	419	59.01	170	49	28.82	310	91	29.35
14		rata- rata	3068.34	400.67	37.74	1911.67	489.17	40.63	2901.67	360.34	35.36	1331.67	518.34	48.83	1121.67	386.34	39.81
15		8	760	28	3.68	5420	158	2.91	740	8	1.08	990	135	13.64	970	128	13.19
16		9	7920	26	0.33	2930	366	12.49	6910	177	2.56	4860	414	8.52	3450	244	7.07
17		10	7920	219	2.76	1580	443	28.04	7930	239	3.01	1110	126	11.35	1130	175	15.49
18	С	14	680	170	25	1050	217	20.67	650	S 239	29.85	550	71	12.91	570	77	13.51
19		15	460	198	43.04	260	78	30.00	470	193	41.06	310	92	29.68	300	54	18
20		16	670	163	24.33	230	84	36.52	710	179	25.21	170	26	15.30	310	28	9.03
21		rata- rata	3068.34	134	16.52	1911.67	224.34	21.77	2901.67	172.5	17.13	1331.67	144	15.23	1121.67	117.67	12.72
22	D	8	760	28	3.68	5420	97	1.79	740	9	1.22	990	119	12.02	970	21	2.16

23		9	7920	18	0.23	2930	102	3.48	6910	131	1.89	4860	107	2.20	3450	28	0.81
24		10	7920	108	1.36	1580	75	4.75	7930	88	1.11	1110	12	1.08	1130	16	1.41
25		14	680	45	6.62	1050	39	3.71	650	240	36.92	550	10	1.82	570	8	1.40
26		15	460	51	11.09	260	30	11.54	470	48	10.21	310	12	3.87	300	4	1.34
27		16	670	49	7.31	230	28	12.17	710	37	5.21	170	22	12.94	310	4	1.29
20		rata-	2069.24	49.84	5.05	1011 67	61.84	6.24	2901.67	02.17	9.43	1221 67	47	5.65	1101.67	13.5	1.40
28		rata 8	3068.34 760	87	5.05 11.45	1911.67 5420	215	3.97	740	92.17	1.62	1331.67 990	22	5.65 2.23	970	13.5	13.92
30		9	7920	31	0.39	2930	323	11.02	6910	303	4.38	4860	293	6.03	3450	138	4
31		10	7920	448	5.66	1580	158	10	7930	362	4.56	1110	59	5.31	1130	72	6.37
32	E	14	680	105	15.44	1050	12	1.14	650	38	5.85	550	38	6.91	570	45	7.89
33	E	15	460	159	34.56	260	59	22.69	470	127	27.02	310	56	18.06	300	26	8.67
34		16	670	142	21.19	230	49	21.30	710	141	19.86	170	17	10.00	310	21	6.77
		rata-					-										
35		rata 8	3068.34	162	14.78	1911.67	136	11.69	2901.67	163.84	10.55	1331.67	80.84	8.09	1121.67	72.84	7.94
36			760	320	42.10	5420	233	4.30	740	12	1.62	990	209	21.12	970	195	20.10
37		9	7920	35	0.44	2930	264	9.01	6910	383	5.54	4860	193	3.97	3450	65	1.88
38		10	7920	438	5.53	1580	94	5.95	7930	263	3.32	1110	46	4.14	1130	41	3.63
39	F	14	680	143	21.03	1050	78	7.43	650	109	16.77	550	32	5.82	570	56	9.82
40		15	460	168	36.52	260	58	22.31	470	122	25.96	310	30	9.68	300	16	5.34
41		16	670	128	19.10	230	16	6.96	710	91	12.82	170	14	8.23	310	17	5.48
42		rata- rata	3068.34	205.34	20.79	1911.67	123.84	9.32	2901.67	163.34	11.004	1331.67	87.33	8.83	1121.67	65	7.71
43		8	760	42	5.53	5420	107	1.97	740	3	0.40	990	43	4.34	970	71	7.32
44		9	7920	16	0.20	2930	99	3.38	6910	183	2.65	4860	103	2.12	3450	54	1.56
45		10	7920	244	3.08	1580	45	2.85	7930	185	2.33	1110	26	2.34	1130	19	1.68
46	G	14	680	58	8.53	1050	37	3.52	650	37	5.69	550	16	2.91	570	13	2.28
47		15	460	69	15	260	28	10.77	470	37	7.87	310	4	1.29	300	4	1.34
48		16	670	51	7.61	230	4	1.74	710	46	6.48	170	6	3.53	310	8	2.58
49		rata-	3068.34	80	6.66	1911.67	53.34	4.03	2901.67	81.84	4.24	1331.67	33	2.75	1121.67	28.17	2.79

1 1		rata															
50		8	760	65	8.55	5420	104	1.92	740	4	0.54	990	86	8.69	970	43	4.43
51		9	7920	14	0.18	2930	114	3.89	6910	167	2.42	4860	119	2.45	3450	48	1.39
52		10	7920	231	2.92	1580	56	3.54	7930	150	1.89	1110	22	1.98	1130	23	2.03
53	Н	14	680	40	5.88	1050	45	4.28	650	54	8.31	550	11	2.00	570	17	2.98
54		15	460	48	10.43	260	33	12.69	470	27	5.74	310	16	5.16	300	7	2.34
55		16	670	55	8.21	230	16	6.96	710	59	8.31	170	4	2.35	310	6	1.93
56		rata- rata	3068.34	75.5	6.03	1911.67	61.34	5.55	2901.67	76.84	4.53	1331.67	43	3.77	1121.67	24	2.52
57		8	760	44	5.79	5420	16	0.29	740	4	0.54	990	6	0.61	970	5	0.51
58		9	7920	2	0.02	2930	25	0.85	6910	29	0.42	4860	35	0.72	3450	5	0.14
59		10	7920	18	0.23	1580	8	0.51	7930	13	0.16	1110	3	0.27	1130	8	0.71
60	I	14	680	5	0.73	1050	14	1.34	650	2	0.31	550	1	0.18	570	1	0.17
61		15	460	15	3.26	260	11	4.23	470	4	0.85	310	2	0.64	300	2	0.67
62		16	670	3	0.45	230	18	7.83	710	37	5.21	170	1	0.59	310	2	0.64
63		rata- rata	3068.34	14.5	1.75	1911.67	15.34	2.51	2901.67	14.84	1.25	1331.67	8	0.50	1121.67	3.84	0.47
64		8	760	5	0.66	5420	52	0.96	740	0	0.00	990	31	3.13	970	18	1.86
65		9	7920	8	0.10	2930	51	1.74	6910	128	1.85	4860	66	1.36	3450	23	0.67
66		10	7920	90	1.14	1580	30	1.90	7930	57	0.72	1110	13	1.17	1130	16	1.41
67	J	14	680	24	3.53	1050	29	2.76	650	15	2.31	550	5	0.91	570	8	1.40
68		15	460	23	5.00	260	19	7.31	470	20	4.25	310	6	1.93	300	5	1.67
69		16	670	20	2.98	230	13	5.65	710	6	0.84	170	1	0.59	310	1	0.32
70		rata-	3068.34	28.34	2.23	1911.67	32.34	3.39	2901.67	37.67	1.66	1331.67	20.34	1.51	1121.67	11.84	1.22
71		rata 8	760	17	2.23	5420	69	1.27	740	2	0.27	990	20.34	2.02	970	44	4.54
72		9	7920	10	0.13	2930	46	1.57	6910	98	1.42	4860	20 77	1.58	3450	40	1.16
73	K	10	7920	156	1.97	1580	27	1.71	7930	99	1.42	1110	14	1.26	1130	15	1.33
74		14	680	42	6.18	1050	20	1.90	650	24	3.69	550	9	1.64	570	4	0.70

75	15	460	30	6.52	260	14	5.38	470	28	5.96	310	8	2.58	300	3	1
76	16	670	36	5.37	230	5	2.17	710	20	2.82	170	2	1.18	310	3	0.97
77	rata- rata	3068.34	48.5	3.73	1911.67	30.17	2.33	2901.67	45.17	2.57	1331.67	21.67	1.71	1121.67	18.17	1.61

2. JENDELA KACA BENING ARAH BARAT

									Intensita	s Pencahay	aan (Lux)						
			Jende	la I (140 X 8	0) cm ²	Jendel	a II (140 X 6	60) cm ²	Jendela	a III (130 X	70) cm ²	Jendela	a IV (120 X	70) cm ²	Jendel	a V (110 X 7	70) cm ²
No.	Titik	Pukul	luar ruangan (lux)	dalam ruangan (lux)	%	luar ruangan (lux)	dalam ruangan (lux)	%	luar ruangan (lux)	dalam ruangan (lux)	%	luar ruangan (lux)	dalam ruangan (lux)	%	luar ruangan (lux)	dalam ruangan (lux)	%
1		8	300	156	52.00	330	103	31.21	210	11	5.24	420	160	38.09	530	194	36.60
2		9	150	81	54.00	390	92	23.59	230	70	30.43	800	163	20.37	740	195	26.35
3		10	300	135	45.00	1060	230	21.70	280	111	39.64	440	113	25.68	690	108	15.65
4	A	14	3860	848	21.97	4880	840	17.21	1030	249	24.17	120	49	40.84	310	47	15.16
5		15	3870	647	16.72	5170	654	12.65	5720	448	7.83	270	46	17.04	220	58	26.36
6		16	2190	630	28.77	3680	239	6.49	2980	423	14.19	220	74	33.64	240	70	29.17
7		rata- rata	1778.33	416.17	36.41	2585	359.67	18.81	1741.67	218.67	20.25	378.34	100.83	29.28	455	112	24.88
8		8	300	150	50.00	330	37	11.21	210	2	0.95	420	155	36.90	530	56	10.57
9		9	150	55	36.67	390	38	9.74	230	73	31.74	800	148	18.50	740	37	5.00
10		10	300	87	29.00	1060	116	10.94	280	58	20.71	440	33	7.50	690	26	3.77
11	В	14	3860	679	17.59	4880	254	5.20	1030	78	7.57	120	12	10.00	310	30	9.68
12		15	3870	660	17.05	5170	242	4.68	5720	255	4.46	270	40	14.81	220	27	12.27
13		16	2190	186	8.49	3680	103	2.80	2980	120	A 4.03	220	34	15.45	240	38	15.84
14		rata- rata	1778.33	302.83	26.47	2585	131.67	7.43	1741.67	97.67	11.58	378.33	70.34	17.19	455	35.67	9.52
15		8	300	71	23.67	330	45	13.64	210	8	3.81	420	56	13.34	530	53	10.00
16	C	9	150	50	33.34	390	67	17.18	230	33	14.35	800	72	9.00	740	42	5.67
17		10	300	60	20.00	1060	164	15.47	280	50	17.86	440	38	8.64	690	31	4.49

18	_	14	3860	312	8.083	4880	126	2.58	1030	108	10.48	120	26	21.67	310	41	13.22
19		15	3870	492	12.71	5170	149	2.88	5720	108	1.89	270	5	1.85	220	19	8.64
20		16	2190	107	4.88	3680	63	1.71	2980	64	2.15	220	22	10.00	240	23	9.58
21		rata- rata	1778.33	182	17.11	2585	102.34	8.91	1741.67	61.84	8.42	378.34	36.5	10.75	455	34.84	8.60
22		8	300	53	17.67	330	7	2.12	210	7	3.34	420	66	15.71	530	11	2.07
23		9	150	12	8.00	390	12	3.08	230	34	14.78	800	13	1.62	740	10	1.35
24		10	300	19	6.34	1060	22	2.07	280	15	5.36	440	11	2.50	690	8	1.16
25	D	14	3860	146	3.78	4880	63	1.29	1030	26	2.52	120	3	2.50	310	5	1.61
26		15	3870	482	12.45	5170	40	0.77	5720	68	1.19	270	9	3.34	220	3	1.36
27		16	2190	42	1.92	3680	21	0.57	2980	26	0.87	220	4	1.82	240	4	1.67
28		rata- rata	1778.33	125.67	8.36	2585	27.5	1.65	1741.67	29.34	4.68	378.34	17.67	4.58	455	6.84	1.54
29		8	300	13	4.34	330	10	3.03	210	12	5.71	420	11	2.62	530	19	3.58
30		9	150	18	12.00	390	15	3.85	230	8	3.48	800	16	2.00	740	15	2.03
31		10	300	32	10.67	1060	33	3.11	280	27	9.64	440	41	9.32	690	11	1.59
32	Е	14	3860	197	5.10	4880	77	1.58	1030	34	3.30	120	3	2.50	310	6	1.93
33		15	3870	207	5.35	5170	61	1.18	5720	102	1.78	270	15	5.56	220	5	2.27
34		16	2190	76	3.47	3680	47	1.28	2980	47	1.58	220	7	3.18	240	7	2.92
35		rata- rata	1778.33	90.5	6.82	2585	40.50	2.34	1741.67	38.34	= G 4.25	378.34	15.5	4.19	455	10.5	2.39
36		8	300	20	6.67	330	31	9.39	210	60	28.57	420	16	3.81	530	77	14.53
37		9	150	52	34.67	390	37	9.49	230	13	5.65	800	42	5.25	740	49	6.62
38		10	300	99	33.00	1060	85	8.02	280	56	20.00	440	39	8.86	690	31	4.49
39	F	14	3860	321	8.32	4880	137	2.81	1030	78	7.57	120	9	7.5	310	14	4.52
40		15	3870	210	5.43	5170	251	4.85	5720	274	4.79	270	3	1.12	220	22	10.00
41		16	2190	306	13.97	3680	158	4.29	2980	173	5.80	220	28	12.73	240	27	11.25
42		rata- rata	1778.33	168	17.01	2585	116.50	6.47	1741.67	109	12.06	378.34	22.84	6.54	455	36.67	8.57
43	G	8	300	63	21	330	7	2.12	210	15	7.14	420	57	13.57	530	78	14.72

44		9	150	20	13.34	390	13	3.34	230	38	16.52	800	16	2.00	740	14	1.89
45		10	300	37	12.34	1060	25	2.36	280	27	9.64	440	10	2.27	690	12	1.74
46		14	3860	317	8.21	4880	54	1.11	1030	30	2.91	120	3	2.50	310	4	1.29
47		15	3870	65	1.68	5170	61	1.18	5720	123	2.15	270	4	1.48	220	5	2.27
48		16	2190	77	3.51	3680	77	2.09	2980	54	1.81	220	9	4.09	240	5	2.08
49		rata- rata	1778.33	96.50	10.01	2585	39.5	2.03	1741.67	47.84	6.70	378.34	16.5	4.32	455	19.67	3.99
50		8	300	19	6.34	330	5	1.51	210	9	4.28	420	15	3.57	530	18	3.40
51		9	150	19	12.67	390	8	2.05	230	18	7.83	800	10	1.25	740	8	1.08
52		10	300	2	0.67	1060	12	1.13	280	11	3.93	440	7	1.59	690	8	1.16
53	Н	14	3860	148	3.83	4880	40	0.82	1030	11	1.07	120	1	0.84	310	9	2.90
54		15	3870	121	3.13	5170	36	0.70	5720	55	0.96	270	4	1.48	220	4	1.82
55		16	2190	38	1.73	3680	29	0.79	2980	22	0.74	220	3	1.36	240	1	0.42
56		rata- rata	1778.33	57.84	4.73	2585	21.67	1.17	1741.67	21	3.13	378.34	6.67	1.68	455	8	1.79
57		8	300	13	4.34	330	5	1.51	210	6	2.86	420	13	3.09	530	8	1.51
58		9	150	13	8.67	390	8	2.05	230	8	3.48	800	10	1.25	740	8	1.08
59		10	300	13	4.34	1060	15	1.41	280	11	3.93	440	5	1.14	690	7	1.01
60	I	14	3860	66	1.71	4880	41	0.84	1030	25	2.43	120	2	1.67	310	3	0.97
61		15	3870	127	3.28	5170	28	0.54	5720	67	1.17	270	3	1.12	220	3	1.36
62		16	2190	34	1.55	3680	25	0.68	2980	20	0.67	220	2	0.91	240	2	0.84
63		rata- rata	1778.33	44.34	3.98	2585	20.34	1.17	1741.67	22.84	2.42	378.34	5.84	1.53	455	5.17	1.13
64		8	300	4	1.34	330	3	0.91	210	6	2.86	420	6	1.43	530	4	0.75
65		9	150	10	6.67	390	7	1.79	230	5 5	2.17	800	9	1.125	740	10	1.35
66		10	300	14	4.67	1060	14	1.32	280	12	4.28	440	8	1.82	690	9	1.30
67	J	14	3860	131	3.39	4880	21	0.43	1030	19	1.84	120	1	0.84	310	4	1.29
68		15	3870	67	1.73	5170	30	0.58	5720	52	0.91	270	3	1.12	220	2	0.91
69		16	2190	41	1.87	3680	46	1.25	2980	18	0.60	220	2	0.91	240	1	0.42
70		rata-	1778.33	44.5	3.28	2585	20.17	1.05	1741.67	18.67	2.11	378.34	4.84	1.20	455	5	1.00

		rata															
71		8	300	11	3.67	330	2	0.61	210	4	1.90	420	2	0.48	530	3	0.57
72		9	150	4	2.67	390	4	1.02	230	5	2.17	800	8	1.00	740	7	0.94
73		10	300	20	6.67	1060	10	0.94	280	17	6.07	440	7	1.59	690	7	1.01
74	K	14	3860	59	1.53	4880	16	0.33	1030	20	1.94	120	1	0.84	310	3	0.97
75		15	3870	26	0.67	5170	18	0.35	5720	30	0.52	270	2	0.74	220	2	0.91
76		16	2190	17	0.78	3680	19	0.52	2980	11	0.37	220	1	0.45	240	1	0.42
		rata-															
77		rata	1778.33	22.84	2.66	2585	11.50	0.63	1741.67	14.50	2.16	378.34	3.5	0.85	455	3.84	0.80

3. JENDELA KACA HITAM ARAH TIMUR

									Intensita	s Pencahaya	an (Lux)						
			Jendel	a I (140 X 8	0) cm ²	Jendela	a II (140 X 6	0) cm ²	Jendela	III (130 X	70) cm ²	Jendela	ı IV (120 X	70) cm ²	Jendela	a V (110 X 7	0) cm ²
No.	Titik	Pukul	luar ruangan (lux)	dalam ruangan (lux)	%	luar ruangan (lux)	dalam ruangan (lux)	9/0	luar ruangan (lux)	dalam ruangan (lux)	%	luar ruangan (lux)	dalam ruangan (lux)	%	luar ruangan (lux)	dalam ruangan (lux)	%
1		8	1190	66	5.55	2530	145	5.73	1170	69	5.90	1630	111	6.81	1660	73	4.40
2		9	6200	365	5.89	1780	96	5.39	2910	231	7.94	6980	161	2.31	5850	253	4.32
3		10	6990	114	1.63	7290	82	1.12	4790	244	5.09	7290	90	1.23	2920	50	1.71
4	A	14	770	38	4.93	1060	25	2.36	760	20	2.63	800	24	3.00	780	26	3.34
5		15	770	55	7.14	1210	37	3.06	760	38	5.00	780	18	2.31	790	24	3.04
6		16	650	29	4.46	390	14	3.59	680	24	3.53	700	19	2.71	690	13	1.88
7		rata- rata	2761.67	111.17	4.93	2376.67	66.50	3.54	1845	104.34	5.01	3030	70.50	3.06	2115	73.17	3.11
8		8	1190	204	17.14	2530	232	9.170	1170	166	14.19	1630	225	13.80	1660	170	10.24
9		9	6200	307	4.95	1780	179	10.06	2910	273	9.38	6980	285	4.08	5850	392	6.70
10		10	6990	189	2.70	7290	104	1.43	4790	353	7.37	7290	125	1.71	2920	76	2.60
11	В	14	770	66	8.57	1060	97	9.15	760	61	8.03	800	45	5.62	780	79	10.13
12		15	770	115	14.93	1210	83	6.86	760	82	10.79	780	53	6.79	790	63	7.97
13		16	650	76	11.69	390	41	10.51	680	79	11.62	700	76	10.86	690	50	7.25

1 1		rata-	1														
14		rata	2761.67	159.50	9.10	2376.67	122.67	7.86	1845	169	10.23	3030	134.84	7.15	2115	138.34	7.48
15		8	1190	50	4.20	2530	30	1.18	1170	33	2.82	1630	41	2.51	1660	39	2.35
16		9	6200	73	1.18	1780	52	2.92	2910	55	1.89	6980	42	0.60	5850	63	1.08
17		10	6990	43	0.61	7290	23	0.31	4790	54	1.13	7290	32	0.44	2920	28	0.96
18	C	14	770	41	5.32	1060	67	6.32	760	33	4.34	800	28	3.50	780	27	3.46
19		15	770	56	7.27	1210	34	2.81	760	36	4.74	780	29	3.72	790	28	3.54
20		16	650	37	5.69	390	17	4.36	680	33	4.85	700	35	5.00	690	27	3.91
21		rata- rata	2761.67	50	4.05	2376.67	37.17	2.98	1845	40.67	3.29	3030	34.5	2.63	2115	35.34	2.55
22		8	1190	16	1.34	2530	17	0.67	1170	9	0.77	1630	4	0.24	1660	4	0.24
23		9	6200	31	0.50	1780	11	0.62	2910	21	0.72	6980	12	0.17	5850	22	0.38
24		10	6990	17	0.24	7290	13	0.18	4790	126	2.63	7290	10	0.14	2920	7	0.24
25	D	14	770	16	2.08	1060	13	1.23	760	6	0.79	800	10	1.25	780	6	0.77
26		15	770	19	2.47	1210	6	0.49	760	4	0.53	780	5	0.64	790	4	0.51
27		16	650	1	0.15	390	2	0.51	680	7	1.03	700	4	0.57	690	2	0.29
28		rata- rata	2761.67	16.67	1.13	2376.67	10.34	0.62	1845	28.84	1.08	3030	7.5	0.50	2115	7.5	0.40
29		8	1190	58	4.87	2530	62	2.45	1170	47	4.02	1630	56	3.43	1660	36	2.17
30		9	6200	99	1.60	1780	40	2.25	2910	84	2.89	6980	80	1.15	5850	100	1.71
31		10	6990	50	0.71	7290	36	0.49	4790	106	2.21	7290	36	0.49	2920	30	1.03
32	Е	14	770	25	3.25	1060	33	3.11	760	21	2.76	800	20	2.50	780	25	3.20
33		15	770	43	5.58	1210	26	2.15	760	15	1.97	780	21	2.69	790	17	2.15
34		16	650	25	3.85	390	11	2.82	680	26	3.82	700	23	3.28	690	14	2.03
35		rata- rata	2761.67	50	3.31	2376.67	34.67	M A 2.21	1845	49.84	2.95	3030	39.34	2.26	2115	37	2.05
36		8	1190	53	4.45	2530	48	1.90	1170	48	4.10	1630	53	3.25	1660	30	1.81
37		9	6200	108	1.74	1780	37	2.08	2910	89	3.06	6980	81	1.16	5850	92	1.57
38	F	10	6990	38	0.54	7290	45	0.62	4790	142	2.96	7290	42	0.58	2920	22	0.75
39		14	770	23	2.99	1060	26	2.45	760	14	1.84	800	15	1.87	780	20	2.56
40		15	770	39	5.06	1210	25	2.07	760	17	2.24	780	19	2.43	790	17	2.15

41		16	650	21	3.23	390	8	2.05	680	18	2.65	700	20	2.86	690	9	1.30
42		rata- rata	2761.67	47	3.003	2376.67	31.5	1.86	1845	54.67	2.81	3030	38.34	2.03	2115	31.67	1.69
43		8	1190	9	0.76	2530	14	0.55	1170	16	1.37	1630	27	1.66	1660	13	0.78
44		9	6200	58	0.93	1780	15	0.84	2910	32	1.10	6980	29	0.41	5850	47	0.80
45	-	10	6990	13	0.18	7290	20	0.27	4790	73	1.52	7290	18	0.25	2920	10	0.34
46	G	14	770	14	1.82	1060	16	1.51	760	2	0.26	800	10	1.25	780	10	1.28
47	J	15	770	22	2.86	1210	13	1.07	760	9	1.18	780	11	1.41	790	9	1.14
48	-	16	650	8	1.23	390	4	1.02	680	11	1.62	700	10	1.43	690	4	0.58
		rata-		-													
49		rata 8	2761.67	20.67	1.30	2376.67	13.67	0.88	1845	23.84	1.18	3030	17.5	1.07	2115	15.5	0.82
50	-	9	1190	20	1.68	2530	15	0.59	1170	11	0.94	1630	16	0.98	1660	8	0.48
51	-	10	6200	45	0.72	1780	12	0.67	2910	33	1.13	6980	26	0.37	5850	30	0.51
52	ŀ		6990	22	0.31	7290	17	0.23	4790	43	0.90	7290	18	0.25	2920	10	0.34
53	Н	14	770	9	1.17	1060	15	1.41	760	9	1.18	800	6	0.75	780	10	1.28
54		15	770	17	2.21	1210	9	0.74	760	5	0.66	780	9	1.15	790	5	0.63
55		16	650	6	0.92	390	3	0.77	680	8	1.18	700	7	1.00	690	4	0.58
56		rata- rata	2761.67	19.84	1.17	2376.67	11.84	0.74	1845	18.17	0.10	3030	13.67	0.75	2115	11.17	0.64
57		8	1190	0	0	2530	5	0.20	1170	1	0.08	1630	4	0.24	1660	0	0.00
58		9	6200	10	0.16	1780	2	[0.11/E]	2910	SLA4/I NE	G 0.14	6980	4	0.06	5850	7	0.12
59		10	6990	4	0.06	7290	4	0.05	4790	4	0.08	7290	4	0.05	2920	2	0.07
60	I	14	770	2	0.26	1060	4	0.38	760	2	0.26	800	3	0.37	780	1	0.13
61		15	770	4	0.52	1210	2	0.16	760	2	0.26	780	1	0.13	790	1	0.13
62		16	650	0	0.00	390	0	0	680	S S	0.15	700	1	0.14	690	0	0.00
63		rata- rata	2761.67	3.34	0.17	2376.67	2.84	0.15	1845	2.34	0.16	3030	2.84	0.17	2115	1.84	0.07
64		8	1190	7	0.59	390	7	1.79	680	4	0.59	700	5	0.71	690	4	0.58
65	J	9	6200	24	0.39	1780	5	0.28	2910	14	0.48	6980	11	0.16	5850	14	0.24
66		10	6990	27	0.39	7290	9	0.12	4790	23	0.48	7290	15	0.20	2920	6	0.20

67		14	770	3	0.39	1060	5	0.47	760	9	1.18	800	2	0.25	780	3	0.38
68		15	770	9	1.17	1210	4	0.33	760	3	0.39	780	7	0.90	790	3	0.38
69	=	16	650	1	0.15	390	0	0.00	680	3	0.44	700	3	0.43	690	7	1.01
70		rata- rata	2761.67	11.84	0.51	2020	5	0.50	1763.34	9.34	0.59	2875	7.17	0.44	1953.34	6.17	0.47
71		8	1190	0	0.00	2530	8	0.32	1170	10	0.85	1630	11	0.67	1660	7	0.42
72		9	6200	32	0.52	1780	6	0.34	2910	23	0.79	6980	22	0.31	5850	26	0.45
73		10	6990	23	0.33	7290	13	0.18	4790	6	0.12	7290	7	0.10	2920	7	0.24
74	K	14	770	5	0.65	1060	4	0.38	760	7	0.92	800	4	0.50	780	6	0.77
75		15	770	11	1.43	1210	4	0.33	760	6	0.79	780	4	0.51	790	5	0.63
76		16	650	3	0.46	390	1	0.26	680	1	0.15	700	7	1.00	690	2	0.29
77		rata- rata	2761.67	12.34	0.56	2376.67	6	0.30	1845	8.84	0.60	3030	9.17	0.52	2115	8.84	0.47

4. JENDELA KACA HITAM ARAH BARAT

				Intensitas Pencahayaan (Lux)													
			Jendel	la I (140 X 8	0) cm ²	Jendela	a II (140 X (60) cm ²	Jendela	III (130 X	70) cm ²	Jendela	ı IV (120 X	70) cm ²	Jendela	a V (110 X 7	(0) cm ²
			luar ruangan	dalam ruangan		luar ruangan	dalam ruangan		luar ruangan	dalam ruangan		luar ruangan	dalam ruangan		luar ruangan	dalam ruangan	
No.	Titik	Pukul	(lux)	(lux)	%	(lux)	(lux)	%	(lux)	(lux)	%	(lux)	(lux)	%	(lux)	(lux)	%
1		8	630	30	4.76	230	19	8.26	500	40	-8.00	630	39	6.19	730	41	5.62
2		9	510	36	7.06	590	28 _	4.74	500	33	6.60	6980	161	2.31	520	33	6.35
3		10	550	36	6.54	640	59	9.22	450	38	8.45	440	43	9.77	660	28	4.24
4	A	14	6480	205	3.16	8730	257	2.94	6960	159	2.28	6830	158	2.31	6720	188	2.80
5		15	4140	315	7.61	1470	87	5.92	4270	243	5.69	3780	132	3.49	3870	200	5.17
6		16	1380	104	7.54	430	31	7.21	1420	82	5.77	1440	78	5.42	1360	82	6.03
7		rata-rata	2281.67	121	6.11	2015	80.17	6.38	2350	99.17	6.13	3350	101.84	4.91	2310	95.34	5.04
8		8	630	13	2.06	230	3	1.30	500	13	2.60	630	9	1.43	730	7	0.96
9	В	9	510	16	3.14	590	7	1.19	500	13	2.60	6980	285	4.08	520	11	2.11
10		10	550	17	3.09	640	12	1.87	450	19	4.23	440	11	2.5	660	13	1.97

11		14	6480	142	2.19	8730	82	0.94	6960	87	1.25	6830	71	1.04	6720	51	0.76
12		15	4140	179	4.32	1470	16	1.09	4270	83	1.94	3780	55	1.45	3870	51	1.32
13		16	1380	41	2.97	430	5	1.16	1420	23	1.62	1440	24	1.67	1360	24	1.76
14		rata-rata	2281.67	68	2.96	2015	20.84	1.26	2350	39.67	2.37	3350	75.84	2.03	2310	26.17	1.48
15		8	630	13	2.06	230	6	2.61	500	11	2.20	630	9	1.43	730	8	1.09
16		9	510	12	2.35	590	7	1.19	500	17	3.40	6980	42	0.60	520	12	2.31
17		10	550	11	2.00	640	12	1.87	450	17	3.78	440	8	1.82	660	7	1.06
18	C	14	6480	48	0.74	8730	60	0.69	6960	29	0.42	6830	44	0.64	6720	31	0.46
19		15	4140	74	1.79	1470	22	1.50	4270	32	0.75	3780	22	0.58	3870	22	0.57
20		16	1380	30	2.17	430	5	1.16	1420	26	1.83	1440	24	1.67	1360	21	1.54
21		rata-rata	2281.67	31.34	1.85	2015	18.67	1.50	2350	22	2.06	3350	24.84	1.12	2310	16.84	1.17
22		8	630	1	0.16	230	0	0.00	500	1	0.20	630	1	0.16	730	1	0.14
23		9	510	2	0.39	590	2	0.34	500	3	0.60	6980	12	0.17	520	1	0.19
24		10	550	2	0.36	640	0	0.00	450	4	0.89	440	1	0.23	660	2	0.30
25	D	14	6480	21	0.32	8730	30	0.34	6960	17	0.24	6830	30	0.44	6720	20	0.30
26		15	4140	21	0.51	1470	4	0.27	4270	12	0.28	3780	11	0.29	3870	9	0.23
27		16	1380	4	0.29	430	0	0.00	1420	4	0.28	1440	3	0.21	1360	3	0.22
28		rata-rata	2281.67	8.5	0.34	2015	6.00	0.16	2350	6.84	0.41	3350	9.67	0.25	2310	6.00	0.23
29		8	630	2	0.32	230	0	U 0.00 EF	S 500 S	SLAI2 NE	G E0.40	630	1	0.16	730	1	0.14
30		9	510	3	0.59	590	2	0.34	500	5	1.00	6980	80	1.15	520	4	0.77
31		10	550	4	0.73	640	5	0.78	450	6	1.34	440	3	0.68	660	4	0.61
32	E	14	6480	30	0.46	8730	35	0.40	6960	21	0.30	6830	41	0.60	6720	23	0.34
33		15	4140	37	0.89	1470	4	0.27	4270	21	0.49	3780	18	0.48	3870	13	0.33
34		16	1380	9	0.65	430	0	0.00	1420	7	0.49	1440	8	0.56	1360	4	0.29
35		rata-rata	2281.67	14.17	0.61	2015	7.67	0.30	2350	10.34	0.67	3350	25.17	0.60	2310	8.17	0.41
36	F	8	630	11	1.75	230	6	2.61	500	15	3.00	630	11	1.75	730	8	1.09
37	•	9	510	15	2.94	590	5	0.85	500	15	3	6980	81	1.16	520	13	2.5

38		10	550	12	2.18	640	15	2.34	450	23	5.12	440	16	3.64	660	14	2.12
39		14	6480	96	1.48	8730	69	0.79	6960	62	0.89	6830	94	1.38	6720	77	1.14
40		15	4140	159	3.84	1470	17	1.16	4270	107	2.50	3780	74	1.96	3870	58	1.50
41		16	1380	34	2.46	430	8	1.86	1420	29	2.04	1440	27	1.87	1360	23	1.69
42		rata-rata	2281.67	54.5	2.44	2015	20.00	1.60	2350	41.84	2.76	3350	50.5	1.96	2310	32.17	1.67
43		8	630	3	0.48	230	1	0.43	500	3	0.60	630	2	0.32	730	2	0.27
44		9	510	11	2.16	590	2	0.34	500	5	1.00	6980	26	0.37	520	13	2.5
45		10	550	9	1.64	640	6	0.94	450	9	2.00	440	5	1.14	660	9	1.36
46	G	14	6480	31	0.48	8730	28	0.32	6960	19	0.27	6830	32	0.47	6720	28	0.42
47		15	4140	32	0.77	1470	5	0.34	4270	26	0.61	3780	20	0.53	3870	13	0.33
48		16	1380	8	0.58	430	0	0.00	1420	8	0.56	1440	5	0.35	1360	7	0.51
49		rata-rata	2281.67	15.67	1.02	2015	7.00	0.39	2350	11.67	0.84	3350	15.00	0.53	2310	12.00	0.90
50		8	630	1	0.16	230	0	0.00	500	2	0.40	630	0	0.00	730	0	0.00
51		9	510	15	2.94	590	0	0.00	500	1	0.20	6980	29	0.41	520	3	0.58
52		10	550	6	1.09	640	0	0.00	450	1	0.23	440	1	0.23	660	2	0.30
53	Н	14	6480	26	0.40	8730	19	0.23	6960	14	0.20	6830	14	0.20	6720	15	0.22
54		15	4140	16	0.39	1470	1	0.07	4270	18	0.42	3780	8	0.21	3870	7	0.18
55		16	1380	8	0.58	430	0	0.00	1420	4	0.28	1440	1	0.07	1360	3	0.22
56		rata-rata	2281.67	12.00	0.93	2015	3.34	∪ 0.05 ⊟ 5	\$ 2350 \$	6.67	GE0.29	3350	8.84	0.19	2310	5.00	0.25
57		8	630	0	0.00	230	0	0.00	500	1	0.20	630	0	0.00	730	0	0.00
58		9	510	6	1.18	590	0	0.00	500	0	0.00	6980	11	0.16	520	1	0.19
59		10	550	1	0.18	640	1	0.16	450	5	1.12	440	1	0.23	660	1	0.15
60	I	14	6480	14	0.22	8730	18	0.21	6960	13	0.19	6830	17	0.25	6720	14	0.21
61		15	4140	15	0.36	1470	2	0.14	4270	11	0.26	3780	7	0.18	3870	7	0.18
62		16	1380	4	0.29	430	0	0.00	1420	3	0.21	1440	1	0.07	1360	3	0.22
63		rata-rata	2281.67	6.67	0.37	2015	3.50	0.08	2350	5.50	0.33	3350	6.17	0.15	2310	4.34	0.16
64	J	8	630	1	0.16	230	0	0.00	500	0	0.00	630	3	0.48	730	1	0.14

65		9	510	2	0.39	590	0	0.00	500	1	0.20	6980	22	0.31	520	0	0.00
66		10	550	0	0.00	640	2	0.31	450	6	1.34	440	0	0.00	660	1	0.15
67		14	6480	12	0.18	8730	13	0.15	6960	9	0.13	6830	13	0.19	6720	14	0.21
68		15	4140	17	0.41	1470	1	0.07	4270	9	0.21	3780	4	0.10	3870	2	0.05
69		16	1380	6	0.43	430	0	0.00	1420	2	0.14	1440	4	0.28	1360	4	0.29
70		rata-rata	2281.67	6.34	0.26	2015	2.67	0.09	2350	4.5	0.33	3350	7.67	0.23	2310	3.67	0.14
71		8	630	0	0.00	230	0	0.00	500	1	0.2	630	1	0.16	730	0	0.00
72		9	510	1	0.20	590	0	0.00	500	2	0.4	6980	4	0.06	520	1	0.19
73		10	550	0	0.00	640	0	0.00	450	4	0.89	440	0	0.00	660	0	0.00
74	K	14	6480	6	0.09	8730	12	0.14	6960	5	0.07	6830	7	0.10	6720	6	0.09
75		15	4140	10	0.24	1470	1	0.07	4270	4	0.09	3780	3	0.08	3870	2	0.05
76		16	1380	2	0.14	430	0	0.00	1420	1	0.07	1440	2	0.14	1360	1	0.07
77		rata-rata	2281.67	3.17	0.11	2015	2.17	0.03	2350	2.84	0.29	3350	2.84	0.09	2310	1.67	0.07

jendela I (140 x 80) cm^2

jendela II (140 x 60) cm²

jendela III (130 x 70) cm^2

jendela IV (120 x 70) cm²

jendela V (110 x 70) cm²

SURAT PERSETUJUAN SEMINAR PROPOSAL SKRIPSI

Kepada

Yth. Ketua Jurusan Fisika

Fakultas Sains dan Teknologi

UIN Alauddin Makassar

Assalamualaikumwr. Wb.

Setelah membaca, meneliti, memberikan petunjuk dan mengoreksi serta mengadakan perbaikan seperlunya, maka kami selaku pembimbing berpendapat bahwa proposal skripsi saudara:

Nama

: Miftahul Jana

NIM

: 60400112020

Judul Proposal

: Pengaruh Model Jendela Terhadap Intensitas Pencahayaan

Ruano

Sudah dapat diajukan kepada Jurusan Fisika Fak. Sains dan Teknologi untuk diseminarkan. Atas perhatiannya, kami ucapkan terima kasih.

UNIVERSITAS ISLAM NEGSamata, 13 Agustus 2016

Dosen Pembimbing I

MAKASSA

Dosen Pembimbing I

Hernawati S.Pd, M.P fis.

NIP. 198306112009122004

Iswadi, S.Pd, M.Si.

NIP. 198303102006041002

SURAT PERSETUJUAN SEMINAR HASIL SKRIPSI

Kepada

Yth. Ketua Jurusan Fisika

Fakultas Sains dan Teknologi

UIN Alauddin Makassar

Assalamualaikum Wr. Wb.

Setelah membaca, meneliti, memberikan petunjuk dan mengoreksi serta mengadakan perbaikan seperlunya, maka kami selaku pembimbing berpendapat bahwa skripsi saudara:

Nama : Miftahul Jana NIM : 60400112020

Judul Skripsi : Pengaruh Ukuran Jendela Terhadap Intensitas

Pencahayaan pada Ruang

Sudah dapat diajukan kepada Jurusan Fisika Fak. Sains dan Teknologi untuk diseminarkan. Atas perhatiannya, kami ucapkan terima kasih.

MAKASSAR

Samata, 02 Juni 2017

Dosen Pembimbing I

Hernawati, S.Pd., M.Pfis

NIP.19830611 200912 2 004

Dosen Pembimbing II

Iswadi, S.Pd., M.Si

NIP.19830310200604 1 002

SURAT PERSETUJUAN SEMINAR MUNAQASYAH SKRIPSI

Kepada

Yth. Ketua Jurusan Fisika

Fakultas Sains dan Teknologi

UIN Alauddin Makassar

Assalamualaikum. Wr. Wb.

Setelah membaca, meneliti, memberikan petunjuk dan mengoreksi serta mengadakan perbaikan seperlunya, maka kami selaku pembimbing berpendapat bahwa skripsi saudara :

Nama

: Miftahul Jana

NIM

: 60400112020

Judul Proposal

: Pengaruh Ukuran jendela Terhadap Intensitas

Pencahayaan pada Ruang

Sudah dapat diajukan kepada Jurusan Fisika Fak. Sains dan Teknologi untuk diseminarkan. Atas perhatiannya, kami ucapkan terima kasih.

Samata, 01 Agustus 2017

LINIVERSITAS ISLAM NEGER

Dosen Pembimbing I

LAUDUI

Hernawati, S.Pd., M.Pfis

NIP.19830611 200912 2 004

Iswadi S Pd M Si

Dosen Pembimbing II

NIP 19830310 200604 1 002

KEMENTERIAN AGAMA UNIVERSITAS ISLAM NEGERI ALAUDDIN MAKASSAR JURUSAN FISIKA FAKULTAS SAINS DAN TEKNOLOGI

Jl. H. M. Yasin Limpo No.36 Gedung D lantai 2

Samata-Gowa, 11 Juli 2017

Perihal : Permohonan Penelitian

Kepada,

Yth

Kepala Pengelola Asrama P2B UIN Alauddin Makassar

Di-

Tempat

Assalamu'alaikumWr. Wb

Dalam rangka penyelesaian penelitian yang sedang saya lakukan guna menyelesaikan

Tugas Akhir/Penelitian. Maka dengan ini:

Nama : Miftahul Jana

Nim : 60400112020

Judul Tugas Akhir/Penelitian : Pengaruh Ukuran Jendela Terhadap Intensitas Pencahayaan Ruang.

Bermaksud untuk meminta izin untuk melakukan penelitian di ASRAMA RUSUNAWA selama 12 hari dari tanggal 12-23 Juli 2017.

Demikian permohonan saya. Atas perhatian dan kesediaan Bapak/Ibu kami ucapkan terimakasih.

Wassalamu'alaikum Wr. Wb UNIVERSITAS ISLAM NEGERI

ALAUDDIN

Pengelola Asrama

Rahmat Amir, A.Md

Pemohon

Miftahul Jana NIM:60400112020

KEMENTERIAN AGAMA UNIVERSITAS ISLAMNEGERI ALAUDDIN MAKASSAR JURUSAN FISIKA FAKULTAS SAINS DAN TEKNOLOGI

Jl. H. M. Yasin Limpo No.36 Gedung D lantai 2

Samata-Gowa, 27 Januari 2017

Perihal

: Permohonan Penelitian

Kepada Yth

Kepala Pengelola Asrama P2B UIN Alauddin Makassar

Di-

Tempat

Assalamu'alaikumWr. Wb

Dalam rangka penyelesaian penelitian yang sedang saya lakukan guna menyelesaikan Tugas Akhir/Penelitian. Maka dengan ini :

Nama

: Miftahul Jana

Nim

: 60400112020

Judul Tugas Akhir/Penelitian

: Pengaruh Ukuran Jendela Terhadap Intensitas

Pencahayaan Ruang.

Bermaksud untuk meminta izin untuk melakukan penelitian di ASRAMA RUSUNAWA selama 10 hari dari tanggal 30 Januari – 8 Februari 2017.

Demikian permohonan saya. Atas perhatian dan kesediaan Bapak/Ibu kami ucapkan terimakasih.

Wassalamu'alaikum Wr. Wb

LINIVERSITAS ISLAM NEGERI

Pengelola Asrama

TMAKASSAB

Rahmat Amir, A.Md

remonon

Miftahul Jana

KEMENTERIAN AGAMA UNIVERSITAS ISLAMNEGERI ALAUDDIN MAKASSAR

JURUSAN FISIKA FAKULTAS SAINS DAN TEKNOLOGI

Jl. H. M. Yasin Umpo No. 36 Gedung D lantal 2

Samata-Gowa, 30 Januari 2017

Perihal

: Permohonan Peminjaman Alat

Kepada,

Kepala Laboratorium Fisika Dasar Jurusan Fisika Fakultas Sains dan Teknologi UIN Alauddin Makassar

Di-

Tempat

Assalamu'alaikumWr. Wb

Dalam rangka penyelesaian penelitian yang sedang saya lakukan guna menyelesaikan

Tugas Akhir/Penelitian. Maka dengan ini

Nama

: Miftahul Jana

Nim

60400112020

Judul Tugas Akhir/Penelitian: Pengaruh Ukuran Jendela Terhadap Intensitas Pencahayaan Ruang.

Bermaksud untuk meminjam alat laboratorium yaitu:

Nama alat	Jumlah	Selama
Lux Meter	2 unit	1 bulan (31 januari – 28
		Februari 2017)

Demikian permohonan saya. Atas perhatian dan kesediaan Bapak/Ibu kami ucapkan terimakasih.

Wassalamu'alaikum Wr. Wh

LINIVERSITAS ISLAM NEGERI

Laboran Lab. Optik

MAKASSAR

Ahmad Yani, S.Si

Miftahul Jana NIM:60400112020

Mengetahui,

Kepala Laboratorium Fisika Dasar

Fakultas Sains dan Teknologi

Rahmaniah, S.Si., M.Si NIP.198002132009012001

KEMENTERIAN AGAMA UNIVERSITAS ISLAM NEGERI ALAUDDIN MAKASSAR JURUSAN FISIKA FAKULTAS SAINS DAN TEKNOLOGI

Jl. H. M. Yasin Limpo No.36 Gedung D lantal 2

Samata-Gowa, 01 Maret 2017

Perihal

: Permohonan Peminjaman Alat

Kepada,

Kepala Laboratorium Fisika Dasar Jurusan Fisika Fakultas Sains dan Teknologi UIN Alauddin Makassar

Di-

Tempat

Assalamu'alaikumWr. Wb

Dalam rangka penyelesaian penelitian yang sedang saya lakukan guna menyelesaikan

Tugas Akhir/Penelitian. Maka dengan ini :

Nama

: Miftahul Jana

Nim

: 60400112020

Judul Tugas Akhir/Penelitian: Pengaruh Ukuran Jendela Terhadap Intensitas Pencahayaan

Ruang.

Bermaksud untuk meminjam alat laboratorium yaitu:

Nama alat	Jumlah	Selama
Lux Meter	2 Unit	2 pekan (01 – 20 Maret 2017)

Demikian permohonan saya. Atas perhatian dan kesediaan Bapak/Ibu kami ucapkan terimakasih.

Wassalamu'alaikum Wr. Wb

Laboran Lab. Optik

UNIVERSITAS ISLAM NEGERI

Ahmad Yani, S.Si

Ment

Pemohon

MIIII Jana NIM:60400112020

MAKASSAR

Mengetahui,

Kepala Laboratorium Fisika Dasar

Fakultas Sains dan Teknologi

| <u>Rahmaniah, S.Si., M.Si</u> | NIP.198002132009012001

KEPUTUSAN DEKAN FAKULTAS SAINS & TEKNOLOGI UIN ALAUDDIN MAKASSAR NOMOR: 1549 TAHUN 2016

TENTANG

PANITIA SEMINAR DRAFT PENELITIAN DAN PENYUSUNAN SKRIPSI MAHASISWA JURUSAN FISIKA FAKULTAS SAINS & TEKNOLOGI UIN ALAUDDIN MAKASSAR

DEKAN FAKULTAS SAINS & TEKNOLOGI UIN ALAUDDIN MAKASSAR

Membaca

: Surat Permohonan Ketua Jurusan Fakultas Sains & Teknologi UIN Alauddin Makassar, **Miftahul Jana NIM 60400112020 tertanggal 30 Agustus 2016**, untuk melaksanakan seminar draft .

Menimbang

Bahwa untuk pelaksanaan dan kelancaran seminar draft/hasil, perlu dibentuk panitia seminar draft dan penyusunan skripsi

Mengingat

- Undang-undang No. 20 Tahun 2003 tentang Sistem Pendidikan Nasional;
 Peraturan Pemerintah Nomor 60 Tahun 1999 tentang Pendidikan Tinggi;
 - Keputusan Presiden Nomor 17 Tahun 2000 tentang pelaksanaan Anggaran Pendapatan dan Belanja Negara;
 - Keputusan Menteri Agama Nomor: 289 Tahun 1993 JO Nomor: 202 B Tahun 1998 tentang Pemberian Kuasa dan Pendelegasian Wewenang Menandatangani Surat Keputusan
 - Keputusan Menteri Agama Nomor: 2 Tahun 2006 tentang Pedoman Pembayaran dalam Pelaksanaan Anggaran Pendapatan dan Belanja Negara di Lingkungan Departemen Agama

6. Keputusan Menteri Agama RI. No. 25 Tahun 2013 tentang Organisasi dan Tata Kerja UIN Alauddin Makassar

 Keputusan Menteri Agama Rl. Nomor 93 Tahun 2007 tentang Statuta UIN Alauddin Makassar;

 Keputusan Menteri Keuangan No.330/05/2008 tentang penetapan UIN Alauddin Makassar pada Dep. Agama sebagai Instansi Pemerintah yang Menerapkan Pengelolaan Badan Layanan Umum (BLU)

MEMUTUSKAN

Menetapkan Pertama

Membentuk Panitia Seminar draft, Jurusan Fisika Fakultas Sains dan Teknologi UIN Alauddin Makassar dengan komposisi :

Ketua : Sahara, S.SI., M.Sc., Ph.D Sekertaris IVER; Ihsan, S.Pd., M.SIEGERI Pembimbing I : Iswadi, S.Pd., M.SI. Penguji I : Rahmanlah, S.SI., M.SI. Penguji II : Sri Zelviani, S.SI., M.Sc. Penguji III A : Dr. H. Aan Parhani, Lc., M.Ag Pelaksana : Risnawati Salam, A.Md.

Kedua

- Panitia bertugas melaksanakan seminar draft/hasil, memberi bimbingan, petunjuk-petunjuk, perbaikan mengenai materi, metode, bahasa dan kemampuan menguasai masalah penyusunan skripsi
- Biaya pelaksanaan seminar draft penelitian dibebankan kepada anggaran Fakultas Sains dan Teknologi UIN Alauddin Makassar
- Apabila dikemudian hari ternyata terdapat kekeliruan dalam surat keputusan ini akan diubah dan diperbaiki sebagaimana mestinya

Surat Keputusan ini disampaikan kepada yang bersangkutan untuk diketahui dan dilaksanakan dengan penuh tanggungjawab.

Ditetapkan di Sententeri Pada tanggal Makassar 30 Agustus 2016

NP. 19691205 199303 1 001

KEPUTUSAN DEKAN FAKULTAS SAINS & TEKNOLOGI UIN ALAUDDIN MAKASSAR NOMOR: 1042 TAHUN 2017

TENTANG

PANITIA SEMINAR HASIL PENELITIAN DAN PENYUSUNAN SKRIPSI MAHASISWA SAINS & TEKNOLOGI UIN ALAUDDIN MAKASSAR

DEKAN FAKULTAS SAINS & TEKNOLOGI UIN ALAUDDIN MAKASSAR

Membaca : Surat Permohanan MIFTAHUL JANA, NIM 40400112020, tertanggal 12-Jun-17, untuk melaksanakan seminar Hasil.

Menimbang : Bahwa untuk pelaksanaan dan kelancaran seminar draft/hasil, perlu dibentuk panitia seminar Hasil dan penyusunan skripsi : 1. Undang Undang No. 200 Kelancaran seminar draft/hasil, perlu dibentuk

Undang-Undang No. 20. Tahun 2003 tentang Sistem Pendidikan Nasional;
 Undang-Undang Nomor 17 Tahun 2003 tentang Keuangan Negara;
 Undang-Undang Nomor 12 Tahun 2012 tentang Pendidikan Tinggi;

4. Peraturan Menteri Agama RI No.1 Tahun 2012 tentang Perubahan ketiga atas Peraturan Menteri Agama Nomor 2 Tahun 2006 tentang Mekanisme Pelaksanaan Pembayaran atas Beban Anggaran Pendapatan dan Belanja Negara di Lingkungan Kementrian Agama:

5. Peraturan Menteri Agama Ri Nomor 25 Tahun 2013 jo Peraturan Menteri Agama Nomor 85 Tahun 2013 tentang Organisasi dan Tata Kerja UIN Alauddin Makassar.

6. Peraturan Menteri Agama Ri. Nomor 20 Tahun 2014 jo Peraturan Menteri Agama Nomor 8 Tahun 2016 tentang Statuta UIN Alauddin Makassar;

7. Keputusan Menteri Agama Nontor 289 Tahun 1993 jo Nomor 202 B Tahun 1998 tentang Pemberian Kudsa dan Pendelegasian Wewenang Menandatangan Surat Seputusan:

8. Keputusan Menteri Keuargan No.330/05/2008 tentang penetapan UIN Alauddin Makassar posta Dep Agama sebagai Instansi Pemerintah yang Menerapkan Pengelalaan Badan Layanan Umum (BLU):

9. Keputusan Rekfor Vin Albuddin No 200 tahun 2016 tentang Pedaman Edukasi Uin Albuddin Makassari

MEMUTUSKAN

Menetapkan Pertama

Kedua

Memberfuk Dewon Penguji Seminar Hasil, Jurusan Fisika dan lekhologi UN Abuctin Makassar dengan komposisi :

Ketua Sahara S.Si., M.Si., Ph.D.
Sekertaris Insan S.Pd., M.Si.
Anggota Penguji Hernawatt S.Pd., M.Pfis.

Anggolg Penguli : Hernawath S.Pd., M.Pils. : Iswadi S.Pd., M.Sl. : Rahmaniah, S.Si., M.Si. : Sti Zelviani S.S. M.Se.

: Sri Zelviani, S.Si., M.Sc. Dr. Aan Farhani, Lc., M.Ag.

Pelaksana : Agusdin, S. Sos.

Panitia bertugas melaksanakan seminar draft/hasil, memberi bimbingan, petunjuk-petunjuk perbaikan mengenai materi, metode, bahasa dan kemampuan menguasai masalah penyusunan skripsi

 Biaya pelaksanaan seminar draft penelitian dibebankan kepada anggaran Fakultas Sains dan Teknologi UIN Alauddin Makassar

 Apabila dikemudian hari ternyata terdapat kekeliruan dalam surat keputusan ini akan diubah dan diperbaiki sebagaimana mestinya

Surat Keputusan ini disampalkan kepada yang bersangkutan untuk diketahui dan dilaksanakan dengan penuh tanggungjawab.

Ditetapkan di Lada tanggal : Makassar : 12-Jun-17 Fakultas Sains

Prof Dr. H. Arifuddin, M. Ag. 19691205 199303 1 001

KEPUTUSAN DEKAN FAKULTAS SAINS & TEKNOLOGI UIN ALAUDDIN MAKASSAR NOMOR:1409 TAHUN 2017

TENTANG

HAYZADANUM MAILU AITINAS JURUSAN FISIKA FAKULTAS SAINS & TEKNOLOGI

DEKAN FAKULTAS	SAINS &	TEKNOLOGI UIN ALAUDDIN	MAKASSAR
Membaca		Surat permohanan	: MIFTAHUL JANA

Membaca Surat permohanan MIM

60400112020 : 08 Agustus 2017 Tanggal

: FISIKA Mahasiswa Jurusan

Untuk Ujian Skripsi/ Munaqasyah yang berjudul " Pengaruh Ukuran Jendela

Terhadap Intensitas Pencahayaan Pada Ruang"

Bahwa saudara tersebut diatas telah memenuhi persyaratan Ujian Skripsi/ Munagasyah

Bahwa untuk pelaksanaan dan kelancaran ujian/ Munaqasyah perlu dibentuk panitia ujian.

Mengingat

1. Undang-Undang No. 20 Tahun 2003 tentang Sistem Pendidikan Nasional;

Undang-Undang Nomor 17 Tahun 2003 tentang Keuangan Negara;

3. Undang-Undang Nomor 12 Tahun 2012 tentang Pendidikan Tinggi;

4. Peraturan Menteri Agama RI No.1 Tahun 2012 tentang Perubahan ketiga atas Peraturan Menteri Agama Nomor 2 Tahun 2006 tentang Mekanisme Pelaksanaan Pembayaran atas Beban Anggaran Pendapatan dan Belanja Negara di Lingkungan Kementrian Agama:

5. Peraturan Menteri Agama RI Nomor 25 Tahun 2013 jo Peraturan Menteri Agama Nomor 85 Tahun 2013 tentang Organisasi dan Tata Kerja UIN Alauddin Makassar

6. Peraturan Menteri Agama Rl. Nomor 20 Tahun 2014 jo Peraturan Menteri Agama Nomor 8 Tahun 2016 tentang Statuta UIN Alauddin Makassar;

Keputusan Menteri Agama Nomor 289 Tahun 1993 jo Nomor 202 B Tahun 1998 tentang Pemberian Kuasa dan Pendelegasian Wewenang Menandatangani Surat Keputusan

8. Keputusan Menteri Keuangan No.330/05/2008 tentang penetapan UIN Alauddin Makassar pada Dep. Agama sebagai Instansi Pemerintah yang Menerapkan Pengelolaan Badan Layanan Umum (BLU)

Keputusan Rektor UIN Alauddin No.200 tahun 2016 tentang Pedoman Edukasi UIN Alauddin Makassar

MEMUTUSKAN

Menetapkan

Menimbang

1. Membentuk Dewan Penguji Skripsi/ Munaqasyan Fakultas Sains dan Teknologi UIN Alauddin Makassar dengan komposisi :

Ketua

: Prof.Dr.H.Arifuddin,M.Ag.

Sekertaris

: Ihsan, S.Pd., M.Sl.

Anggota Penguji

: Hernawati, S.Pd., M.Pfis. Iswadi, S.Pd., M.Si.

: Rahmaniah, S.Si., M.Si.

: Sri Zelviani, S.Si., M.Sc.

: Dr.Aan Parhani, Lc., M.Ag.

Pelaksana

: Risnawati Salam, S.Sos.

2. Panitia bertugas melaksanakan ujian Skripsi/Munaqasyah bagi saudara yang namanya tersebut diatas.

3. Biaya pelaksanaan ujian dibebankan kepada anggaran Fakultas Sains & Teknonologi UIN Alauddin Makassar.

Apabila dikemudian hari ternyata terdapat kekeliruan dalam surat keputusan ini akan diubah dan diperbaiki sebagaima na mestinya.

Keputusan ini disampaikan kepada yang bersangkutan untuk diketahui dan dilaksanakan dengan penuh rasa tanggung jawab.

Ditetapkan di Makassar

Pada tanggal, 08 Agustus 2017

ENTERIAN 40 Dekan

Profibr. H Arifuddin, M. Ag. 19691205 199303 1 001