Penerapan Analisis Faktor untuk Menentukan Faktor-faktor yang Mempengaruhi Mahasiswa dalam Memilih Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar

Diajukan Untuk Memenuhi Salah Satu Syarat Meraih Gelar Sarjana Sains (S.Si) Pada Jurusan Matematika Fakultas Sains Dan Teknologi Universitas Islam Negeri Alauddin Makassar

UNIVERSITAS ISLAM NEGERI

JURUSAN MATEMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI ALAUDDIN
MAKASSAR
2014

PENGESAHAN SKRIPSI

Skripsi yang berjudul "Penerapan Analisis Faktor Untuk Menentukan Faktor-Faktor Yang Mempengaruhi Mahasiswa dalam Memilih Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar", yang disusun oleh saudari FIFI ELPIRA, Nim: 60600110019 Mahasiswa Jurusan Matematika pada Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Alauddin Makassar, telah diuji dan dipertahankan dalam sidang munaqasyah yang diselenggarakan pada hari Kamis tanggal 11 Desember 2014 M, bertepatan dengan 18 Shafar 1436 H, dinyatakan telah dapat diterima sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains (S.Si.).

1965

Makassar,

11 Desember 2014 M

18 Shafar 1436 H

DEWAN PENGUJI

Ketua : Dr. Muh. Khalifah Mustami, M.Pd.

Sekretaris : Muhammad Ridwan, S.Si., M.Si.

Munaqisy I : Irwan, S.Si., M.Si.

Munaqisy II : Adnan Sauddin, S.Pd., M.Si.

Munaqisy III : Muh. Rusyidi Rasyid, S.Ag., M.Ed.

Pembimbing I : Ermawati, S.Pd., M.Si.

Pembimbing II : Wahidah Alwi, S.Si., M.Si.

Diketahui oleh:

Dekan Fakultas Sains dan Teknologi

UN Alauddin Makassar

DE Mah. Khalifah Mustami, M.Pd.

4Nip 19711204 200003 1 001

SURAT PERNYATAAN KEASLIAN SKRIPSI

Saya yang bertanda tangan di bawah ini:

Nama : FIFI ELPIRA

NIM : 60600110019

Fakultas/Jurusan : Sains dan Teknologi / Matematika

Judul skripsi : Penerapan Analisis Faktor untuk menentukan Faktor-faktor

yang mempengaruhi mahasiswa dalam memilih Jurusan

Matematika Fakultas Sains dan Teknologi Universitas

Islam Negeri Alauddin Makassar.

Menyatakan dengan sebenar-benarnya bahwa hasil penelitian saya ini tidak terdapat unsur-unsur penjiplakan karya penelitian atau karya ilmiah yang pernah dilakukan atau dibuat oleh orang lain, kecuali yang secara tertulis dikutip dalam naskah ini dan disebutkan dalam sumber kutipan dan daftar pustaka.

Apabila ternyata hasil penelitian ini terbukti terdapat unsur-unsur jiplakan, maka saya bersedia untuk mempertanggungjawabkan, serta diproses sesuai peraturan yang berlaku.

UNIVERSITAS ISLAM NEGERI

Makassar, Yang Membuat Pernyataan

FIFI ELPIRA_ NIM. 60600110019

Motto

"Allah akan mengangkat (derajat) orang-orang yang beriman di antaramu dan orang-orang yang diberi ilmu beberapa derajat. dan Allah Maha teliti apa yang kamu kerjakan".(Q.S.Al-Mujaadilah:11)

- ❖ Jangan berhenti berusaha ketika menemui kegagalan. Karena kegagalan adalah cara Allah SWT mengajari kita tentang arti kesungguhan.
- ❖ Jangan pernah menyerah untuk hari ini karena hanya Allah yang mengetahui hari esok
- * Kita bebas memilih tetapi kita tidak akan terbebas dari konsekuensi apa yang dipilih.

ALAUDDIN

M A K A S S A R

<u>Persembahan</u>

Syukur Alhamdulillahirabbil Aalamiin segala puja dan puji syukur kehadirat Allah SWT atas segala nikmat serta limpahan Rahmat dan Hidayah-Nya, sehingga skripsi ini dapat terselesaikan. Sholawat dan salam semoga tetap terlimpahkan kepada Nabi Muhammad SAW beserta keluarga dan para sahabatnya.

Dengan terselesaikannnya skripsi ini, penulis persembahkan skripsi ini untuk kedua orang tua tercinta yang telah ikhlas mendo'akan, mengorbankan tenaga fikiran, dan memberikan dukungan baik moril maupun spiritual, dan nasehat pada penulis demi kebahagiaan dan kesuksesan dalam menyelesaikan skripsi ini.

KATA PENGANTAR

Assalmu'alaikum Wr.Wb.

Puji syukur kehadirat Allah SWT, karena atas rahmat dan hidayahnya sehingga penulis dapat menyelesaikan penelitian dan penyusunan skripsi ini dengan tepat waktu sesuai dengan rencana.

Skripsi dengan judul: "Penerapan Analisis Faktor untuk Menentukan Faktor-faktor yang Mempengaruhi Mahasiswa dalam Memilih Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar" yang merupakan tugas akhir dalam menyelesaikan studi dan sebagai salah satu syarat yang harus dipenuhi untuk memperoleh gelar Sarjana Sains (S.Si) pada program studi Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar.

Penulis menyadari sepenuhnya bahwa memulai hingga mengakhiri proses pembuatan skripsi ini bukanlah hal seperti membalikkan telapak tangan. Ada banyak hambatan dan cobaan yang dilalui. Skripsi ini jauh dari kesempurnaan yang diharapkan, baik dari segi teoritis, maupun dari pembahasan hasilnya. Hanya dengan ketekunan dan kerja keraslah yang menjadi penggerak sang penulis dalam menyelesaikan segala proses tersebut. Juga karena adanya berbagai bantuan baik berupa moril dan materil dari berbagai pihak yang telah membantu memudahkan langkah sang penulis.

Secara khusus penulis menyampaikan ucapan terima kasih yang sebesar-besarnya kepada kedua orang tua tercinta ayahanda ABD. HARIS dan ibunda RATNA yang telah mempertaruhkan seluruh hidupnya untuk kesuksesan

penulis, yang telah melahirkan, membesarkan dan mendidik dengan sepenuh hati dalam buaian kasih sayang kepada penulis.

Selama menempuh studi maupun dalam merampungkan dan menyelesaikan skripsi ini, penulis banyak dibantu oleh berbagai pihak. Oleh sebab itu, pada kesempatan ini penulis mengucapkan banyak terima kasih kepada :

- Bapak Prof. Dr. H. Qadir Gassing, M.A selaku Rektor Universitas Islam Negeri (UIN) Alauddin Makassar.
- Bapak Dr. Muh. Khalifah Mustami, MPd selaku Dekan Fakultas Sains dan Teknologi UIN Alauddin Makassar.
- 3. Ibu Ermawati, S.Pd., M.Si selaku Ketua Jurusan Matematika dan Ibu Wahyuni Abidin, S.Pd., M.Pd selaku Sekretaris Jurusan Akuntansi UIN Alauddin Makassar.
- 4. Ibu Ermawati, S.Pd., M.Si. dan Ibu Wahidah Alwi, S.Si., M.Si., selaku pembimbing satu dan pembimbing dua yang dengan penuh kesabaran telah meluangkan waktu dan pikirannya untuk memberikan bimbingan, arahan, dan petunjuk mulai dari membuat proposal hingga rampungnnya skripsi ini.
- 5. Segenap Dosen Fakultas Sains dan Teknologi UIN Alauddin Makassar yang telah memberikan kesempatan kepada penulis untuk mengikuti pendidikan, memberikan ilmu pengetahuan, dan pelayanan yang layak selama penulis melakukan studi.
- 6. Seluruh keluarga besar penulis yang ada di Kab. Bulukumba Kec. Bulukumpa, Teristimewa kepada Adik-adikku JUSDAR dan ALVIRA, kepada Om-Tante, Kakak-kakak dan Adik-adik sepupu yang telah memberikan dukungan yang tiada hentinya buat penulis.
- 7. Sahabat Penulis "F2B@" (Hasriani, Fitriani, Besse Rohmahtul) untuk kesempatan bersama-sama menghabiskan waktu layaknya saudara. "Aspurie

Laughing" (Jannah, Degu, Dian, Yani, Itha, K'Mika, K'Evi, K'Wana, K'Irma, Nhunu, Esse, K'Tuti dan YuNa, K'Rahma, Dwi, Fitri, Anhy, Anti) untuk kebersamaannya menjalani kehidupan anak Kost. ILY. "Teman-Teman pondok ANUGRAH", (kk. Jannah, Engke/fira, kk.Tiar, Kk. Lela, kk. Asma, Anti, kk. Arham).

- 8. Sahabat-sahabat **KKN Reguler UIN** Alauddin Makassar angkatan ke-49 Kab. GOWA, Kec.Bajeng, Desa. PANNYANGKALANG, (Desi, Cia, Abudzar, Sahdad, Fajrin dan Amri. Bapak dan Ibu Kepala Desa, Bapak dan Ibu posko, kak.Inha, Kak.Amma selaku Kakak Posko dan segenap tenaga pengajar,warga, serta adik-adik bimbingan di Desa Labbo. Karena dukungan dan motivasi kalian penulis dapat menyelesaikan skripsi ini.
- 9. Teman-Teman dan sahabat-sahabat "AXIOMA 2010", Senior maupun junior Matematika UIN Alauddin Makassar, terkhusus teman ALGEBRA yang selama ini memberikan banyak motivasi, bantuan dan telah menjadi teman diskusi yang hebat bagi penulis.
- 10. Keluarga Besar **UKM KSR PMI UIN** Alauddin Makassar. Teman-Teman *RICH FAMILY*, (Nur Rahmi Said, Rifkah fauzia Natrsir, Surya Ningsih, Taufiq, Amrullah), Terimakasih atas doa dan dukungannya selama ini. Serta Semua pihak yang tidak dapat disebutkan satu per satu yang telah membantu penulis dengan ikhlas.

Semoga skripsi yang penulis persembahkan ini dapat bermanfaat dan menambah ilmu pengetahuan. *Amin Ya Rabbal Alamin*

Makassar, Desember 2014

Penulis

DAFTAR ISI

HALAMAN JUDUL	i
PENGESAHAN SKRIPSI	ii
SURAT PERNYATAAN KEASLIAN SKRIPSI	iii
MOTTO DAN PERSEMBAHAN	iv
KATA PENGANTAR	vi
DAFTARISI	
DAFTAR GAMBAR	
DAFTAR TABEL	
DAFTAR SIMBOL	
ABSTRACT	xiv
I. PENDAHULUAN	
A. Latar Belakang	1
B. Rumusan Masalah	8
C. Tujuan Penelitia	8
D. Manfaat penelitian	8
E. Batasan Masalah S.IT.A.S.I.S.I.A.M. MEGERI	9
F. Sitematika Penulisan I. KAJIAN PUSTAKA	9
A. Statistik Multivariat	12
B. Analisis Faktor	17
C. Faktor yang mempengaruhi seseorang dalam memil	lih sesuatu 38
II. METODE PENELITIAN	
A. Jenis Penelitian	40
B. Jenis Data dan Sumber Data	40

	C. Waktu dan Lokasi Penelitian)
	D. Populasi dan Sampel	1
	E. Teknik Pengambilan Sampel41	
	F. Teknik Pengumpulan Data41	
	G. Variabel Penenlitian	1
	H. Definisi Oprasional Variabel	2
	I. Prosedur Analisis Data	5
IV	HASIL DAN PEMABAHASAN	
	A. HASIL	5
	B. PEMBAHASAN70)
\mathbf{V}	KESIMPULAN DAN SARAN	
	A. KESIMPULAN	3
	B. SARAN	3
DAFTAF	R PUSTAKA	
LAMPIR	AN UNIVERSITAS ISLAM NEGERI	
	A. Lampiran Hasil B. Validasi Program C. Persuratan	
	V., FEINHAIAH	

RIWAYAT HIDUP

DAFTAR GAMBAR

Gambar 1.1 : Langkah-langkah Analisis Faktor.

Gambar 4.1 : Scree Plot hasil Ekstraksi.

Gambar 4.2 : Component Plot in Rotated Space.

ALAUDDIN

M A K A S S A R

DAFTAR TABEL

Tabel 2.1	: Metode Analisis Multivariate
Tabel 3.1	: Daftar Indikator dalam Pemilihan Jurusan Matematika Fakultas Sains dan Teknologi Univeritas Islam Negeri Alauddin Makassar.
Tabel 4.1	: Nilai KMO dan Bartlett's Test of Sphericity
Tabel 4.2	: Nilai Anti Image Matrices Correlation variabel stelah uji MSA
Tabel 4.3	: Nilai Anti Image Matrices Correlation setelah variabel X ₃ dikeluarkan dari uji MSA
Tabel 4.4	: Nilai Anti Image Matrices Correlation setelah variabel \mathbf{X}_{20} dikeluarkan dari uji MSA
Tabel 4.5	: Nilai Anti Image Matrices Correlation setelah variabel X_6 dikeluarkan dari uji MSA
Tabel 4.6	: Nilai $Anti$ $Image$ $Matrices$ $Correlation$ setelah variabel X_{14} dikeluarkan dari uji MSA.
Tabel 4.7	: Kontribusi Variabel hasil Ekstraksi
Tabel 4.8	: Hasil Ekstraksi PCA
Tabel 4.9	: Jumlah faktor hasil Ekstraksi (PCA)
Tabel 4.10	: Component Matrix sebelum rotasi Varimax
Tabel 4.11	: Kelompok faktor hasil rotasi
Tabel 4.12	: Hasil interpretasi variabel

DAFTAR SIMBOL

$F_1, F_2, \dots F_m$	= Faktor Umum (Common Factor)
μί	= Rata − rata peubah ke − i,
$arepsilon_i$	= Faktor Khusus (errors)
F_j	= Faktor umum ke-j atau common factor ke-j
L_{ij}	= Muatan peub <mark>ah ke-i pad</mark> a faktor ke-j atau <i>loading factor</i> .
X_i	= Variabel ke i yang dibakukan (rata-ratanya nol, standar
	deviasinya satu).
F_j	= Common factor ke j.
m	= Banyaknya <i>common factor</i> .
Σ	U= Matriks kovarian ISLAM NEGERI
Ψ	= Variansi Khas.
S	= Matriks kovarians
R	= Matriks Korelasi
a_{ij}	= Koefisien variabel asal ke-i untuk komponen utama ke-j
λ_{j}	= Eigen value untuk komponen utama ke-j

 S_{x_i} = Simpangan baku variabel asal ke-j

 X^2 = Bartlett test of sphericity.

 $h = High \ loading$

p = Komponen variabel.

L = Faktor *Loading*

 \hat{L} = Faktor *Loading* baru

 \widehat{f}_{J} = Faktor *Score*.

 \hat{L}^T = Faktor *Loading* Transpos.

e = *Eigen vector*

 $L_{(pxm)}$ = Faktor loding (pxm).

 $L_{(p xp)}$ = Faktor loding (pxp).

 σ = Variansi Populasi.

LL^T = Loding faktor transpos.

 $Z_1 \; , \! Z_2, \ldots , \! Z_n \qquad \qquad = Pengamatan \; Terbakukan \;$

 $\widehat{\lambda}$ = Nilai *eigen* baru.

 \hat{e} = Nilai vektor *eigen* baru.

 $\widehat{\lambda}_p$ = Nilai eigen p.

 \hat{e}_p = Nilai vektor eigen p.

 $\widehat{\Psi}$ = Varians khusus baru.

v = Jumlah variabel

n = jumlah sampel

 $|M_{vv}|$ = determinan matriks korelasi.

 r_{ij} = koefisien korelasi sederhana antara variabel i dan j.

 \propto = Alpha 5%.

 $h_1^2 = High \ loading \ (l_{i1}^2 + l_{i2}^2 + l_{i3}^2 + ... + l_{im}^2).$

ALAUDDIN M A K A S S A R

ABSTRAK

Nama Penyusun : Fifi Elpira NIM : 60600110019

Judul Skripsi : Penerapan Analisis faktor untuk menentukan faktor-

faktor yang mempengaruhi mahasiswa dalam memilih Jurusan Matematika Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Jurusan Matematika merupakan salah satu jurusan yang banyak dipilih oleh mahasiswa, dilihat dari jumlah mahasiswa yang setiap tahunnya semakin meningkat. Penelitian ini bertujuan untuk mengetahui faktor-faktor yang berpengaruh terhadap mahasiswa dalam memilih Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar. Dalam penelitian ini menggunakan data primer yang diperoleh dengan membagikan koesioner kepada mahasiswa Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar. Data tersebut selanjutnya dianalisis dengan menggunakan Analisis Faktor. Hasil penelitian menunjukkan bahwa terdapat lima faktor yang mempengaruhi mahasiswa dalam memilih Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar. Faktor pertama yaitu keistimewaan dan fasilitas, faktor kedua yaitu Gedung perkuliahan dan Sosial, faktror ketiga yaitu Promosi, faktor keempat yaitu kenyamanan, faktor kelima yaitu keadaan.

Kata kunci : Analisis Faktor, nilai eigen, Principal Component Analysis (PCA), Rotasi Varimax.

ABSTRACT

Name : Fifi Elpira NIM : 60600110019

Thesis Title : Application of factor analysis to determine the factors that

influence students in choosing the Department of Mathematics Faculty of Science and Technology of the State

Islamic University Alauddin Makassar

Department of Mathematics is one of the majors that has been chosen by the students, in terms of the number of students is increasing every year. This study aims to determine the factors that influence students in choosing the Department of Mathematics Faculty of Science and Technology of the State Islamic University Alauddin Makassar. In this study, using primary date obtained by distributing questioner to students from the Department of Mathematics Faculty of Science and Technology of the State Islamic University Alauddin Makassar. The data were further analyzed using factor analysis. The results showed that there are five factors that influence students in choosing the Department of Mathematics Faculty of Science and Technology of the State Islamic University Alauddin Makassar. The first factor is a privilege and facility, the second factor is the building university and social, third factor promotion, the fourth factor is the convenience, the fifth factor is the situation.

Keywords: Factor analysis, eigenvalues, Principal Component Analysis (PCA), Varimax rotation.

BABI

PENDAHULUAN

A. Latar Belakang

Perkembangan dewasa ini, menunjukkan bahwa sejalan dengan berkembangnya ilmu pengetahuan seseorang seringkali dihadapkan dengan berbagai macam permasalahan seperti halnya permasalahan dalam menentukan program studi, sering terjadi kekeliruan dalam menentukan program studi apa yang akan dipilih serta universitas mana yang dijadikan pilihan untuk melanjutkan pendidikan ketingkat yang lebih tinggi. Menentukan program studi dan universitas bukanlah hal yang mudah oleh karena itu memerlukan pemikiran yang matang. Seperti halnya Jika memutuskan untuk memilih program studi ilmu matematika.

Matematika merupakan ilmu pengetahuan yang diperoleh dengan bernalar menggunakan istilah yang didefinisikan dengan cermat, jelas, dan akurat, representasinya dengan lambang-lambang atau simbol dan memiliki arti serta dapat digunakan dalam pemecahan masalah yang berkaitan dengan bilangan.²

MAKASSAR

¹Afifsalim, *matematika terapan* http://www.shideshare.net/afifsalim/matematikaterapan (diakses 5 mei 2014).

²Dedi, *pengertian Matematika*. http://dedi26.blogspot.com/2013/apa itu matematika. pengertian. html. (diakses 10 mei 2014)

Adapun surah yang menyangkut tentang ilmu adalah (QS Al-Mujaadilah/58:11)

يَنَأَيُّهَا ٱلَّذِينَ ءَامَنُوٓا إِذَا قِيلَ لَكُمۡ تَفَسَّحُواْ فِ ٱلْمَجَلِسِ فَٱفۡسَحُواْ يَفۡسَحِ ٱللَّهُ لَكُمۡ ۖ وَالَّذِينَ ءَامَنُواْ مِنكُمۡ وَٱلَّذِينَ أُوتُواْ ٱلْعِلْمَ دَرَجَنتِ ۚ وَإِذَا قِيلَ ٱنشُرُواْ فَٱنشُرُواْ يَرۡفَعِ ٱللَّهُ ٱلَّذِينَ ءَامَنُواْ مِنكُمۡ وَٱلَّذِينَ أُوتُواْ ٱلْعِلْمَ دَرَجَنتِ ۚ وَٱللَّهُ بِمَا تَعۡمَلُونَ خَبِيرُ ﴾ وَٱللَّهُ بِمَا تَعۡمَلُونَ خَبِيرُ ﴾

Terjemahnya:

"wahai orang-orang beriman apabila dikatakan kepadamu:"berilah kelapangan dalam majelis-majelis", Maka lapangkanlah, niscaya Allah akan memberi kelapangan untukmu. dan apabila dikatakan: "Berdirilah kamu", Maka berdirilah, niscaya Allah akan mengangkat (derajat) orang-orang yang beriman di antaramu dan orang-orang yang diberi ilmu beberapa derajat. dan Allah Maha teliti apa yang kamu kerjakan."

Ayat diatas menyangkut perbuatan dalam suatu majelis. Ayat di atas memberi tuntunan bagaimana menjalin hubungan harmonis dalam suatu mejelis. Allah swt berfirman: hai orang-orang yang beriman, apabila dikatakan kepada kamu oleh siapapun: "berlapang-lapanglah" yakni berupayalah dengan sungguh-sungguh walau dengan memaksakan diri untuk memberi tempat orang lain dalam majelis-majelis yakni satu tempat, baik tempat duduk maupun bukan untuk duduk, apabila diminta kepada kamu agar melakukan itu maka lapangkanlah tempat itu untuk orang lain dengan sukarela. Jika kamu melakukan itu maka niscaya Allah swt akan melapangkan segala sesuatu buat kamu dalam hidup ini. Allah swt akan memberi kelapangan bagi ummatnya yang memberikan kelapangan terhadap sesamanya, sesuai dengan hadis berikut:

³ Departemen Agama RI, *Al-karim Al-Quran dan terjemahannya*,h.793.

Terjemahnya:

"Dirahmati Allah seseorang yang melapangkan tempat buat saudaranya." ⁴

Apabila dikatakan kepada kamu atau siapapun : "berdirilah kamu" maka berdirilah, niscaya Allah akan mengangkat derajat orang-orang yang beriman diantaramu dan orang-orang yang diberi ilmu beberapa derajat. Allah swt akan meninggikan derajat orang-orang yang beriman diantara kamu wahai yang memperkenangkan tuntunan ini dan orang-orang yang diberi ilmu pengetahuan beberapa derajat kemuliaan didunia dan diakhirat dan terhadap apa yang kamu kerjakan sekarang dan masa datang maha mengetahui.⁵

Allah swt memerintahkan ummatnya untuk menuntut ilmu sesuai hadis dengan beriku:

Terjemahnya:

"Tuntutlah ilmu dan belajarlah (untuk ilmu) ketenangan dan kehormatan diri, dan bersikaplah rendah hati kepada orang yang mengajar kamu." (HR. Al-Thabrani)⁶

⁴ Abu al-hasan Muqatil bin Sulaiman bin Basyir al-Azdi al-Balkhiyyi, Tafsir Muqatil bin Sulaiman, juz IV (Beirut: Dar Ihya'al-Turas,1423 H), h.262.

⁵M. Ouraish Shihab, Tafsir Al-Mishbah (Jakarta:Lentera Hati.2002).h.77

⁶ Sulaiman bin Ahmad bin Ayyub bin Muthayyar lil Khumyi al-syam abu al-Qasim al-Thabrani, al-Mu'jam al-Ausat, Juz VI (kairoh: Dar al-Haramain,t.d), h,200.

Ilmu merupakan sarana mempertebal keimanan kepada Sang Pencipta sehingga kita dapat merasakan karunia atau nikmat dalam mempelajarinya. Karena ilmu disini sebagai sarana, Allah swt telah menciptakan ilmu dimuka bumi ini dalam berbagai bentuk, termasuk didalamnya adalah matematika. Matematika tidak lain adalah ciptaan Allah swt yang ditemukan oleh manusia. Tidak ada yang sia-sia (bathil) pada ciptaan Allah swt, termasuk matematika. Ilmu matematika banyak digunakan dalam kehidupan sehari-hari misalnya ilmu statistik, kemajuan teknologi tidak dapat dipisahkan dari statistik. Statistik banyak digunakan dalam kehidupan para peneliti, pendidik, manajer, analisis olahraga, analisis politik, pengusaha dan hampir semua orang yang terdididk.

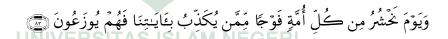
Statistika merupakan ilmu yang diturunkan oleh Allah swt kepada manusia. Disinilah manusia diharapkan mampu menggunakannya dengan baik dan sesuai dengan kebutuhan, agar dapat menemukan kebesaran Allah swt di dalamnya. Perguruan tinggi merupakan salah satu sarana dalam penyelenggaraan dan pengembangan pendidikan yang dapat mengembangkan dan meningkatkan mutu kehidupan masyarakat bangsa dan negara. Terdapat banyak perguruan tinggi yang mempunyai program S1 di Indonesia. Perguruan tinggi dapat berbentuk akademik, politeknik, sekolah tinggi, institut atau universitas. Kemampuan mahasiswa untuk memperoleh ilmu pengetahuan tergantung dari penyampaian informasi atau promosi tentang perguruan tinggi yang bersangkutan. Salah satu perguruan tinggi yang ada di Indonesia adalah Universitas Islam Negeri Alauddin Makassar. Universitas Islam

⁷ Toni wijaya, *Analisis multivariate* (Yogyakarta: Universitas atma jaya, 2010), h. 1

Negeri Alauddin Makassar memiliki kesempatan yang sama terhadap universitas yang lain untuk dipilih oleh calon mahasiswa baru yang akan menlanjutkan studinya. Universiatas Islam Negeri Alauddin Makassar Memiliki 8 fakultas, diantaranya fakultas sains dan teknologi, fakultas ini memiliki 9 jurusan diantaranya jurusan Matematika. Jurusan Matematika merupakan salah satu jurusan yang banyak dipilih oleh mahasiswa dilihat dari jumlah mahasiswa yang setiap tahunnya semakin meningkat.

Matematika sebagai sumber dari ilmu yang lain, karena banyak sekali cabang ilmu pengetahuan yang pengembangan teori-teorinya didasarkan pengembangan konsep matematika. Sebagai contoh, banyak teori-teori dan cabangcabang dari fisika dan kimia (moderen) yang ditemukan dan dikembangkan melalui konsep kalkulus, khususnya tentang persamaan diferensial. Contoh lain, teori ekonomi, mengenai permintaan dan penawaran yang dikembangkan melalui konsep fungsi dan kalkulus tentang diferensial dan integral. Dari kedudukan matematika sebagai pelayanan ilmu pengetahuan, tersirat bahwa matematika sebagai suatu ilmu yang berfungsi pula untuk melayani ilmu pengetahuan. Dapat dikatakan bahwa matematika tumbuh dan berkembang untuk dirinya sendiri sebagai suatu ilmu dan sebagai penyedia jasa layanan untuk pengembangan ilmu-ilmu yang lain.⁸

Apabila ditinjau dari peranan ilmu Matematika terhadap mahasiswa yang semakin meningkat, secara umum terdapat beberapa faktor yang melatarbelakangi


 8 Afifsalim, $\it matematika\ terapan$, http://www.shideshare.net/afifsalim/matematika terapan. (diakses 5 mei 2014).

-

mahasiswa dalam memilih jurusan Matematika. Faktor-faktor yang mempengaruhi mahasiswa dalam menenpuh pendidikan adalah proses, biaya, latarbelakang social ekonomi, motivasi, fasilitas, referensi, lokasi, promosi, reputasi dan saran dari alumni.⁹

Pada penelitian ini diperlukan analisis untuk menentukan faktor-faktor mahasiswa dalam memilih jurusan Matematika. Analisis yang dapat digunakan adalah adalah analisis faktor, karena analisis faktor bertujuan untuk mengidentifikasi adanya hubungan antar variabel sehingga dapat diklasifikasikan menjadi beberapa kumpulan variabel yang lebih sedikit dari jumlah variabel awal. Analisis faktor tidak dibedakan adanya variabel bebas dan variabel terikat.

Surah yang menyangkut tentang kumpulan atau kelompok dijelaskan dalam surah (QS An-Naml /27:83).

Terjemahnya:

"dan (ingatlah) hari (ketika) Kami kumpulkan dari setiap umat segolongan orang yang mendustakan ayat-ayat Kami, lalu mereka dibagi-bagi (dalam kelompok-kelompok)." ¹⁰

⁹ Novita, Analisis faktor-faktor yang mempengaruhi keputusan mahasiswa dalam menenpuh pendidikan pada politeknik LP3 (Medan : Universitas Sumatra Utara,2004).

¹⁰ Departemen Agama RI, Al-karim Al-Quran dan terjemahannya,h.541.

Setelah keluarnya dabbad yang diuraikan oleh ayat yang lalu, terjadilah kiamat, karena itu ayat di atas menguraikan sekelumit dari yang akan terjadi seketika itu. Allah berfirman: Dan ingat serta ingatkanlah hari ketika kami kumpulkan secara paksa atau suka dari tiap-tiap umat segolongan yang banyak dari orang-orang yang senantiasa mendustakan ayat-ayat kami yang bersifat kauniyah dan qauliyah, lalu mereka ditahan dan dibagi dalam kelompok–kelompok¹¹. Pada ayat-ayat ini Allah SWT menerangkan tingkah laku dan perbuatan orang-orang kafir yang mendustakan Allah dan Rasul-Nya ketika mereka menyaksikan sendiri datangnya hari Kiamat setelah menjelaskan tanda-tanda pendahuluannya. Pada hari itu Allah mengumpulkan dari tiap-tiap umat segolongan manusia yang besar sekali jumlahnya yang mendustakan ayat-ayat Allah, dan setelah mereka berkumpul semuanya di padang mahsyar untuk menerima cercaan dan penghinaan, mereka semuanya berdiri di hadirat Allah SWT untuk menghadapi berbagai-bagai pertanyaan dan pemeriksaan

Kata faujan digunakan untuk segerombolan yang berjalan cepat. Kata UNIVERSITAS ISLAM EGERI segerombolan dalam ayat di atas bermakna sekumpulan, sehubungan dengan hal tersebut, menjelaskan dalam analisis faktor data diklasifikan dan dikelompokkan. Berdasarkan uraian sebelumnya, maka penulis tertarik untuk melakukan penelitian yang berjudul "Penerapan Analisis Faktor untuk Menentukan faktor-faktor yang Mempengaruhi Mahasiswa dalam Memilih Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar".

¹¹ M. Quraish Shihab, Tafsir Al-Mishbah (Jakarta:Lentera Hati,2002),h.280-281

B. Rumusan Masalah

Rumusan masalah dari penelitian ini yaitu faktor-faktor apa saja yang berpengaruh terhadap mahasiswa dalam memilih Jurusan Matematika Universitas Islam Negeri Alauddin Makassar ?

C. Tujuan Penelitian

Tujuan dari penelitian ini adalah Mengetahui faktor-faktor yang berpengaruh terhadap mahasiswa Jurusan Matematika dalam memilih Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar.

D. Manfaat Penelitian

Dengan tercapainya tujuan penelitian ini maka banyak manfaat yang dapat diperoleh baik bagi penulis, pembaca dan manfaat bagi Universitas yaitu:

1. Bagi peneliti sendiri

Untuk memperdalam pemahaman penulis tentang Analisis multivariat khususnya Analisis faktor serta mengembangkan wawasan tentang faktor apa saja yang menjadi pemicu mahasiswa memilih Jurusan Matematika.

2. Bagi Pembaca

Dapat dijadikan sebagai referensi tentang penerapan analisis faktor untuk menentukan variabel yang berpengaruh terhadap mahasiswa dalam memilih Jurusan Matematika Fakultas Sains dan Teknologi dengan menggunakan analisis faktor".

3. Bagi Jurusan

Manfaat bagi jurusan adalah Memberi informasi serta sebagai pengembangan ilmu, yang diharapkan dapat memberikan sumbangan pemikiran dalam rangka memperdalam wawasan mengenai penerapan analisis faktor.

4. Bagi Universitas Islam Negeri Alauddin Makassar

Hasil penelitian ini akan menambah perbendaharaan skripsi perpustakaan UIN Alauddin Makassar, sehingga dapat dimanfaatkan oleh mahasiswa Universitas Islam negeri Alauddin Makassar.

E. Batasan Masalah

Batasan – batasan masalah dari penelitian ini adalah :

- Faktor-faktor yang diteliti yaitu bakat dan minat, cita-cita dan pengaruh keadaan, lapangan kerja.
- Penelitian dilakukan pada mahasiswa jurusan matematika fakultas Sains dan Teknologi Universitas Islam Negri Alauddin Makassar.
- 3. Analisis yang digunakan menggunakan analisis faktor.

F. Sistematika Penulisan

Agar penulisan tugas akhir ini tersusun secara sistematis, maka penulis memberikan sistematika penulisan sebagai berikut :

a. Bab I : pendahuluan

Bab ini membahas tentang isi keseluruhan penulisan skripsi yang terdiri dari latar belakang pemilihan judul serta alasan penggunaan analisis faktor, rumusan masalah membahas apa saja yang ingin dimunculkan dalam pembahasan, tujuan penulisan memaparkan tujuan yang ingin dicapai oleh penulis, manfaat penulisan memaparkan manfaat yang ingin dicapai oleh penulis, <u>batasan</u> masalah memaparkan tentang bagaimana masalah yang dirumuskan dibatasi agar tidak terlalu luas ruang lingkup pembahasannya, dan sistematika penulisan membahas tentang apa saja yang dibahas pada masing-masing bab.

b. Bab II: Tinjauan Pustaka.

Bab ini memaparkan tentang teori-teori yang berhubungan dengan analisis faktor.

c. Bab III : Metode Penelitian

Bab ini membahas tentang metode-metode atau cara dalam penelitian yang akan dilakukan oleh penulis, meliputi pendekatan penelitian yang digunakan, bahan kajian, cara menganalisis serta pembuatan suatu kesimpulan.

d. Bab IV: Pembahasan

Bab ini membahas tentang semua contoh penyelesaian analisi faktor, penerapan analisis faktor untuk menentukan variabel yang berpengaruh terhadap mahasiswa dalam memilih Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar dengan menggunakan analisis faktor

e. Bab V : Penutup

Bab ini merupakan Bab terakhir didalamnya memuat kesimpulan dari pembahasan serta saran.

BAB II

KAJIAN PUSTAKA

A. Statistik Multivariat

secara umum, Analsisi multivariat atau metode multivariat berhubungan dengan metode-metode statistik yang melakukan analisis terhadap lebih dari dua variabel pada setiap objek atau orang. Jadi, bisa dikatakan analisis multivariat dikatakan perluasan dari analisis univariat (seperti uji t) atau bivariat (seperti korelasi dan regresi sederhana). Analisis Multivariat adalah analisis multi variabel dalam satu atau lebih hubungan.¹

Analisis multivariat dapat dikelompokkan menjadi dua kelompok yaitu analisis dependensi atau ketergantungan (dependence methods) dan analisis interdependensi atau saling ketergantungan (interdependensi methods). Analisis dependensi bertujuan untuk menjelaskan atau meramalkan nilai variabel tak bebes berdasrakan lebih dari satu variabel bebas yang memepengaruhinya. Analisis interdepensi bertujuan untuk memberikan arti (meaning). Kepada satu set variabel (kelompok variabel) atau mengelompokkan suatu set variabel menjadi kelompok yang lebih sedikit jumlahnya dan masing-masing kelompok membentuk variabel baru yang disebut faktor (mereduksi jumlah variabel).²

¹Singgih Santoso, Satistik Multivariat (Jakarta: Elex Media Komputindo, 2014), h.6.

²Supranto, *Analisis Multivariat Arti dan Interpretasi* (Jakarta : PT RINEKA CIPTA,2004),h.19

Jenis data dalam analisis multivariat yaitu:

1. Kualitatif (data nominal dan data Ordinal)

Data kualitatif adalah data yang dikategorikan menurut gambaran kualitas objek yang diperhatikan. Golongan data ini dikategorikan menurut sifat atau atribut.³ Data kualitatif adalah data yang didapat dengan cara menghitung sehinggga tidak akan mempunyai nilai desimal. Contoh data kualitatif adalah data gender, data golongan darah, data tempat tinggal atau jenis pekerjaan. Misalkan data gender didapat laki-laki 25 orang dan perempuan 15 orang jadi data tersebut tidak berbentuk desimal karna tidak akan mungkin jenis kelamin perempuan 15,5 begitupun dengan jenis kelamin la ki-laki 25,5.

2. Kuantitatif (data interval dan data rasio)⁴

Data kuantitatif adalah data yang didapat dengan cara melakuakan pengukuran dan mempunya desimal serta nilainya berubah-ubah atau disebut peubah. Dilihat dari nilainya, data dapat dibedakan atas data farik dan data malar, hasil yang diperoleh dengan cara mencacah disebut data farik sedangkan hasil yang diperoleh dari cara mengukur. Contoh data farik misalkan suatu keluarga memiliki anak lakilaki empat dan anak perempuan lima. Contoh data malar misalkan tinggi badan seseorang pastinya berbeda misalkan tinggi badan A 150 cm dan bisa saja tinggi badan B 150,5 cm.

³ Singgih Santoso, Satatistik Multivariat (Jakarta: Elex Media Komputindo, 2014), h.8.

_

⁴ Muhammad Arif Tiro, *Dasar-dasar Statistika* (Makassar : Andira Publisher, 2008), h.90.

Data dapat dibedakan menjadi dua macam menurut sumbernya yaitu data intern dan data ekstren. Contoh data ekstren adalah misalkan sebuah kantor mencatat segala macam, kegiatan pegawai, pengeluaran, keadaan inventaris, dan lain sebagainya. Sedangkan contok untuk data ekstren yaitu data dari luar kantor. Pengumpulan data dapat dibedakan menjadi dua macam yaitu data primer dan data sekunder, data yang didapt secara langsung dari lapangan dikatakan data primer sedangkan untuk data sekunder adalah data yang sebelumnya telah ada, seperti data dari BPS atau data dari penelitian terdahulu.

Metode yang termasuk ke dalam golongan analisis multivariat adalah sebagai berikut:

Tabel 1.1 Metode analisis multivariat

No.	Metode	Tujuan	Model
1	Dwin ain al	Mereduksi dimensi data dengan cara	X 7 1 X 7 .
1	Principal	Mereduksi dimensi data dengan cara	$\mathbf{Y}_i = \mathbf{a}' \mathbf{X}$ maks
	Component	membangkitkan variabel baru (komponen	var(Y _i) dan cor (Y _i , Y _j)
	Analysis	utama) yang merupakan kombinasi linear	= 0
	A	dari variabel asal sedemikan hingga	LIN
		varians komponen utama menjadi	R
		maksimum dan antar komponen utama	
		bersifat saling bebas	

No.	Metode	Tujuan	Model
2	Factor	Mereduksi dimensi data dengan cara	$X = CF + \varepsilon$
	Analysis	menyatakan variabel asal sebagai	maks var (C F)
		kombinasi linear sejumlah faktor,	
		sedemikian hingga sejumlah faktor	
		tersebut mampu menjelaskan sebesar	
		mungkin keragaman data yang	
		dijelaskan oleh variabel asal.	
3	Cannonical	Menganalisis hubungan antar dua	Ada dua kelompok
	Correlation	kelompok variabel dengan cara	variabel X dan Y
		membangkitkan variabel baru pada	Dibangkitkan
		setiap kelompok. Variabel baru	variabel baru :
		tersebut merupakan kombinasi linear	$\mathbf{U}_i = \mathbf{a}' \mathbf{X} dan$
		dari variabel asal. Kombinasi	$\mathbf{V}_i = \mathbf{b}' \mathbf{Y}$ sehingga
		linearnya ditentukan sedemikian	\mathbb{R} corr($\mathbf{U}_i, \mathbf{V}_i$) maks
		hingga korelasi antar variabel baru	$Con(O_i, V_i)$ maks
	A	yang berasal dari dua kelompok	$\operatorname{dan} \operatorname{corr}(\mathbf{U}_i, \mathbf{V}_j) = 0$
		menjadi maksimum	R
4	Multivariate	Memodelkan hubungan antara	$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$
	Regression	kelompok variabel respon (Y) dengan	
		kelompok variabel (X) yang diduga	

No.	Metode	Tujuan	Model
		mempengaruhi variabel respon	
5	MANOVA	Menganalisis hubungan antara vektor	$Y_{ijk} = \mu_k + \tau_{ik} + \varepsilon_{ijk}$
		variabel respon (Y) yang diduga	$i=1,,t$ $j=1,,n_i$
		dipengaruhi oleh beberapa perlakuan	k=1,,p
		(treatment).	
6	Discriminat	Membentuk fungsi yang memisahkan	
	Analysis	antar kelompok berdasarkan variabel	
		pembeda, fungsi tersebut disusun	
		sehingga keragaman data antara	
		kelompok maksimum.	
7	Cluster	Mengelompokkan data kedalam	
	Analysis	beberapa kelompok sehingga data	
		yang berada di dalam kelompok yang	
		sama cenderung mempunyai sifat yang	RI
	Λ	lebih homogen dari pada data yang	
		berada di kelompokyang berbeda	LIT

B. Analisis Faktor

1. Pengertian Analisis Faktor

Analisis faktor merupakan suatu analisis statistik yang berfungsi untuk mereduksi atau meringkas beberapa variabel yang saling independen menjadi lebih sedikit variabel. Dengan kata lain, proses analisis faktor mencoba menemukan hubungan (interrelationship) antar sejumlah variabel-variabel yang saling independen satu dengan yang lain sehingga bisa dibuat satu atau beberapa kumpulan variabel yang lebih sedikit dari jumlah variabel awal. Jumlah variabel baru yang terbentuk disebut sebagai faktor dan tetap mencerminkan variabel-variabel aslinya.⁵

Analisis faktor merupakan suatu alat uji banyak variabel dimana untuk mengamati dan menganalisis suatu fenomena yang dapat dibuat suatu pola. Variabelvariabel yang banyak dan tidak terobservasi disebut sebagai faktor. Pada dasarnya model faktor ini adalah pendorong bagi pembentukan suatu argumentasi. Variabelvariabel yang didapat dalam model itu akan dikelompokkan berdasarkan hubungan antar variabel tersebut. Melalui analisis faktor dapat dilihat apakah sperifikasi konstruk yang dikembangkan secara teoritik telah sesuai dengan konsep konstruk yang mendasarinya setelah dilakukan uji coba. Secara esensial, analisis faktor adalah suatu teknik analisa penyaring untuk menganalisa hubungan antara variabel.

⁵ Ali Baroroh, *Analisis Multivariat dan Time series dengan SPSS 21* (Jakarta : PT Elex Media Komputindo ,2013),h.55.

⁶ Joni kriswanto, *Analisis Fakotor* http://jonikriswanto.blogspot.com/search/label/analisis %20faktor. (diakses 16 mei 2014).

Analisis faktor adalah salah satu metode statistik multivariate yang mencoba menerangkan hubungan antara sejumlah variabel-variabel yang saling independen antara satu dengan yang lain sehingga bisa dibuat satu atau lebih kumpulan peubah yang lebih sedikit dari jumlah peubah awal. Analis faktor juga digunakan untuk mengetahui faktor-faktor dominan dalam menjelaskan suatu masalah. Analisis faktor adalah kajian tentang saling ketergantungan antar variabel-variabel, dengan tujuan untuk menemukan himpunan variabel-variabel baru yang jumlahnnya lebih sedikit dari variabel awal.

Sejarah pengembangan analisis faktor, awal pemodelannya diletakkan pada permulaan abad ke-20 oleh Karl Pearson kemudian Charles Spearmen dan yang lainnya mendefinisakn dan mengukur inteligensi, karena awal hubungan ini dengan konstruk intelegensi, analisis faktor mula-mula dikembangkan oleh ilmuan yang tertarik dalam pengukuran psikometrik. Argumentasi pada interprestasi psikologis dan beberapa studi pendahuluan dan kurangnya fasilitas komputasi yang kuat menjadi kendala pada pengembangan awalnya sebagai metode statistik. Kehadiran komputer yang berkecepatan tinggi membangkitkan minat baru dalam aspek teoritis dan perhitungan analisis faktor. Analisis faktor semakin banyak digunakan dalam

-

⁷ Susianto, *Faktor Analysis*. <u>http://lilikfe.staff.uns.ac.id/2008/09/18/uji-validitas-confirmatory-faktor-analysis</u>. 16 Mei 2014.

⁸ Suyanto, *Metode Statistika Multivariat* (Jakarta: Departemen Pendidikan dan Kebudayaan,1988).

berbagai penelitian, terutama penelitian yang memberi perhatian pada banyak peubah (variabel).⁹

2. Tujuan Analisis Faktor

Tujuan utama analisis faktor adalah untuk menjelaskan, hubungan kovariansi antara banyak peubah dalam bentuk sejumlah besaran acak populasi yang tidak teramati, yang disebut *factor*. Analisis faktor dapat pula digunakan untuk menguji hipotesis mengenai suatu konstruk.¹⁰

Pada dasarnya tujuan analisis faktor adalah: 11

- a. *Data Summarization*, yakni mengidentifikasi adanya hubungan antara variabel dengan melakukan uji korelasi. Jika korelasi dilakukan antara variabel (dalam artian SPSS adalah 'kolom'), analisis tersebut dinamakan R *factor Analysis*. Namun, jika korelasi dilakukan antara responden atau sampel (dalam pengertian SPSS adalah 'baris') analisis disebut Q *factor Analysis*, yang juga populer disebut *Cluster Analysis*.
- b. Data reduction, yakni setelah melakukan korelasi, membuat sebuah variabel set baru yang dinamakan faktor untuk menggantikan sejumlah variabel tertentu.

3. Model Faktor

Analisis faktor menerangkan variasi sejumlah variabel asal dengan menggunakan faktor yang lebih sedikit dan yang tidak teramati dengan anggapan

 $^{^9\,}$ Muhammad Arif Tiro, Sukarna, dan Aswi, *Analisis Faktor* (cet. Makassar : Andira Publisher, 2006), h.211.

Muhammad Arif Tiro, sukarna, dan Aswi, *Analisis Faktor* (cet.1;Makassar : Andira Publisher,2006),h.211.

¹¹ Singgih Santoso, Satistik Multivariat (Jakarta: Elex Media Komputindo, 2014), h.58.

bahwa semua variabel awal dapat dinyatakan sebagai kombinasi linierdari faktorfaktor itu ditambahkan dengan suku residual. Peubah acak teramati X, dengan p
komponen mempunyai vektor rata-rata μ dan matriks kovariansi Σ . Model faktor
mempostulatkan bahwa X bergantung linear pada beberapa peubah acak yang tidak
teramati $F_1, F_2, ... F_m$ yang disebut faktor umum (*common factors*), dan p sumber
variansi tambahan $\varepsilon_1, \varepsilon_2, ... \varepsilon_p$, yaitu disebut kesalahan (*errors*), kadang-kadang juga
disebut faktor khusus (*specific faktors*). Secara khusus, model analisis faktor adalah:

$$X_{1} - \mu_{1} = l_{11} F_{1} + l_{12} F_{2} + \dots l_{1m} F_{m} + \varepsilon_{1}$$

$$X_{2} - \mu_{2} = l_{21} F_{1} + l_{22} F_{2} + \dots l_{2m} F_{m} + \varepsilon_{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$X_{P} - \mu_{P} = l_{P1} F_{1} + l_{P2} F_{2} + \dots l_{Pm} F_{m} + \varepsilon_{P}$$

$$(2.1)$$

Atau dalam notasi matriks

$$X_{(px1)} - \mu_{(px1)} = L_{(pxm)} - F_{(mx1)} + \varepsilon_{(px1)}$$
 (2.2)

Koefisien l_{ij} disebut muatan (loading) dari peibah ke-i pada faktor ke-j, sehingga matriks L disebut matriks muatan faktor. Model faktor berimplikasi tertentu terhadap hubungan kovariansi yaitu :

1.
$$(F) = 0$$
 $Kov(F) = (FF^T) = I$

2.
$$(\varepsilon) = 0$$
, dan kov $(\varepsilon) = (\varepsilon \varepsilon^T) = \Psi$

¹² Jhonson, Richard, and Wichern, "*Applied Multivariate Statistical Analysisi*" (New Jersey : University of Wisconsin, Prentice Hall inc, 1982).

$$kov(\varepsilon) = (\varepsilon\varepsilon^{T}) = \Psi = \begin{bmatrix} \Psi 1 & 0 & \cdots & 0 \\ 0 & \Psi 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Psi p \end{bmatrix}$$

3. $F \operatorname{dan}(\varepsilon)$ bebas sehingga kov $(\varepsilon, F) = (\varepsilon F^T) = 0$.

Hubungan dengan persamaan (2.2) merupakan model faktor *orthogonal* dengan faktor umum, dalam rotasi matriks ditulis sebagai berikut :

$$\frac{X}{(px1)} = \frac{\mu}{(px1)} + \frac{L}{(pxm)} \frac{F}{(mx1)} + \frac{\varepsilon}{(px1)}$$
(2.3)

Dimana:

X = variabel yang dibakukan.

 $\mu = rata - rata peubah$

 ε = faktor Khusus

F = faktor umum atau *common factor*.

L = muatan faktor atau *loading factor*.

Variabel-variabel acak tidak teramati F dan ε memenuhi syarat berikut : UNIVERSITAS ISLAM NEGERI

F dan ε bebas, (F) = 0 dan kov (F) = I

$$(\varepsilon) = 0$$
, dan kov $(\varepsilon) = (\varepsilon \varepsilon^T) = \Psi$

Model faktor orthogonal berimplikasi ke struktur kovariansi untuk X,

$$(X-\mu) (X-\mu)^{T} = (LF + \varepsilon) (LF + \varepsilon)^{T}$$

= $(LF + \varepsilon)[(LF)^{T} + \varepsilon^{T}]$

$$= (LF)(LF)^{T} + \varepsilon(LF)^{T} + LF \varepsilon^{T} + \varepsilon\varepsilon^{T}$$

$$= (LFFL^{T}L^{T}) + \varepsilon F^{T}L^{T} + LF \varepsilon^{T} + \varepsilon\varepsilon^{T}$$
(2.4)

Sehingga:

$$\sum = \text{kov}(X) = E[(X - \mu) - (X - \mu)]^{T}$$

$$= L E(FF^{T})L^{T} + E(\varepsilon F)L^{T} + L E(F\varepsilon^{T}) + E(\varepsilon \varepsilon^{T})$$

$$= LL^{T} + \Psi.$$
(2.5)

Model faktor orthogonal

$$(X-\mu)F^{T} = (LF + \varepsilon) F^{T} = LFF^{T} + \varepsilon F^{T}$$
(2.6)

Sehingga:

$$Kov (X,F) = E[X-\mu]F^{T} = L E[FF^{T}] + E[\varepsilon F^{T}] = L$$

Jadi, struktur kovariansi untuk model faktor orthogonal memenuhi sifat

1. $Kov(X) = LL^T + \Psi$.

Var
$$(X_i) = (l_{i1}^2 + l_{i2}^2 + l_{i3}^2 + ... + l_{im}^2) + \Psi_i$$

$$Kov(X_i+X_k) = l_{i1}+l_{k1}+...+l_{im}l_{km}$$
 ISLAM NEGERI

2. Dan Kov (X,F) = L atau Kov $(X_i, F_j) = L_{ij}$

Dimana:

 X_i = variabel ke i yang dibakukan (rata-ratanya nol, standar deviasinya satu).

MAKASS

 $F_j = common factor \text{ ke j.}$

 μi = Faktor unik variabel ke i.

m =banyaknya common factor.

Pada dasarnya, banyak besaran yang tidak teramati sehingga diferifikasi langsung model faktor dari pengamatan $X_1, X_2, X_3, ..., X_P$ pada variabel yang umumnya berkorelasi. Hubungan antara varians variabel asal dengan, varians faktor dan varians error adalah sebagai berikut:

1.
$$Kov(X) = LL^T + \Psi$$
, atau

$$\sigma\mu = h_1^2 + \Psi_1$$

Atau var
$$(X_i) = (l_{i1}^2 + l_{i2}^2 + l_{i3}^2 + ... + l_{im}^2) + \Psi_i$$
 (2.7)

2. Kov
$$(X_i + X_k) = l_{i1} + l_{k1} + ... + l_{im} l_{km}$$
 (2.8)

Model faktor mengasumsikan bahwa varian dan kovarians dapat dihasilkan dari pm muatan faktor dan variansi khas, jika m=p, matriks kovarians sama dengan LL^T , sehingga Ψ dapat menjadi matriks nol. Tetapi apabila m relative kecil dari p analisis faktor sangat diperlukan. Jika m>1, terdapat ketidak pastian terkait dengan moel faktor Matriks kovariansi sampel S adalah sebuah penaksir matriks kovariansi populasi Σ yang tidak diketahui. Jika unsur-unsur diluar diagonal dari S kecil atau diluar diagonal dari matriks korelasi R=0, yakni variabel-variabel tidak terkait, sebuah analisis faktor tidak akan menunjukkan manfaat. Jika matriks kovarian Σ tampak menyimpang secara signifikan dari sebuah matriks diagonal, sebuah analisis faktor dapat dibuat, dan masalah awal adalah menaksir muatan faktor l_{ij} dan variansi khas Ψ_1 .

-

¹³ Anik Purwaningsih, "Penentuan rotasi yang sesuai dalam analisis faktor dengan analisis procrustes" (Batan: pusat pengembangan dan teknologi dan komputasi).

Besarnya bobot l_{ij} dan variansi khas dapat diduga dengan menggunakan $\,$ dua pendekatan yaitu pendekatan ekploratori (exploratory factor analysis) melalui komponen utama atau Principal Component Analysis (PCA) pendekatan kedua yaitu konfirmatori (Confirmatory Factor Analysis) melalui metode maximum likelihood (ML). 14 Komponen utama dari matriks kovariansi Σ , untuk vektor random X = 1[Xi,...,Xp] yang mempunyai matriks kovariansi ∑ dengan pasangan eigen value dan eigen vector adalah ($\lambda_i e_i$) dimana $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_p \geq 0$, maka diperoleh komponen utama, ke-i sebagai berikut:

$$\sum = \lambda_1 e_1 e_1^T + \lambda_2 e_2 e_2^T + ... + \lambda_p e_p e_p^T$$

$$= \left[\sqrt{\lambda_{1}e_{1}}, \sqrt{\lambda_{2}e_{2}}, ..., \sqrt{\lambda_{p}e_{p}}\right] \sqrt{\lambda_{1}e_{1}^{T}}$$

$$\vdots$$

$$\sqrt{\lambda_{p}e_{p}^{T}}$$

$$\vdots$$

$$\sqrt{\lambda_{p}e_{p}^{T}}$$

$$(2.9)$$

Hasil ini sesuai dengan struktur matriks kovariansi untuk model analisis faktor yang mempunyai faktor sebanyak variabel dua variansi khas $\Psi_1 = 0$ untuk semua i. Matriks muatan atau loading factor mempunyai kolom ke-j yang diberikan oleh $\sqrt{\lambda_i e_j}$ jadi dapat dituliskan :

$$\sum_{(p \ xp)} = L_{(p \ xp)} L^{T}_{(p \ x \ p)} + 0_{(p \ xp)} = LL^{T}$$
(2.10)

¹⁴ Gaguk Margono, "The Development Of Instrument For Measuring Attitides toward Statistik Using Semantik Differential scale" jurnal International Seminar on Quality and Affordable Education (ISQAE) (Jakarta: UNJ, 2013).

Satu bagian dari faktor skala $\sqrt{\lambda_j}$, muatan faktor pada faktor ke-j adalah koefisien untuk komponen utama ke-j dari popuasi. Jika faktor-faktor khusus dimasukkan dalam model, variansinya dapat diambil dari unsur-unsur diagonal Σ - LL^T dimana $LL^T = L_{(p \times p)} L^T_{(p \times p)}$, maka diperoleh bahwa :

$$\sum = LL^T + \Psi$$

$$= \begin{bmatrix} \sqrt{\lambda_1} e_1^T \\ \sqrt{\lambda_2} e_2^T \\ \cdots \\ \vdots \\ \sqrt{\lambda_m} e_m^T \end{bmatrix} + \begin{bmatrix} \psi_1 & 0 & \cdots & 0 \\ 0 & \psi_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \psi_p \end{bmatrix}$$

Dimana
$$\Psi_1 = \sigma_{ii} - \sum_{j=1}^{m} l_{ij}^2$$
, untuk i= 1,2,...p (2.11)

Representasi ini, apabila diterapkan pada matriks kovariansi sampel S atau matriks korelasi R maka dikenal dengan penyelesaian komponen utama. Nama ini di **UNIVERSITAS ISLAM NEGERI** ambil dari fakta muatan faktor adalah koefisien yang skala dari beberapa komponen utama sampel.

Untuk menerapkan pendekatan ini pada himpunan data $X_1, X_2, X_3,, X_p$ biasanya pengamatan-pengamatan dipusatkan dengan mengurangi rata-rata sampel dari masing-masing data pengamatan terpusat dinyatakan dalam bentuk:

$$X_{j} - \overline{x} = \begin{bmatrix} x_{j1} \\ x_{j2} \\ \vdots \\ x_{jp} \end{bmatrix} - \begin{bmatrix} \overline{x}_{1} \\ \overline{x}_{2} \\ \vdots \\ \overline{x}_{p} \end{bmatrix} = \begin{bmatrix} x_{j1} - \overline{x}_{1} \\ x_{j2} - \overline{x}_{2} \\ \vdots & \vdots \\ x_{jp} & \overline{x}_{p} \end{bmatrix}, j = 1, 2, \dots p$$
(2.12)

Dan mempunyai matriks kovariansi sampel S yang sama dengan matriks kovariansi pengamatan semula. Dalam kasus satuan dari variabel-variabel tidak setara, sebaiknya variabel-variabel dibakukan.

$$Z_{j} = (x_{j} - \tilde{x}) = \begin{bmatrix} \frac{X_{j1} - \tilde{x}_{1}}{\sqrt{S_{11}}} \\ \frac{X_{j2} - \tilde{x}_{2}}{\sqrt{S_{22}}} \\ \frac{X_{jp} - \tilde{x}_{2}}{\sqrt{S_{pp}}} \end{bmatrix}, j = 1, 2, \dots, n$$
(2.13)

Matriks data *n x p* dari pengamatan terbakukan adalah :

$$Z = \begin{bmatrix} X_1^T \\ X_2^T \\ \vdots \\ X_p^T \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} & \dots & Z_{1p} \\ Z_{21} & Z_{22} & \dots & Z_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{n1} & Z_{n2} & \dots & Z_{np} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{x_{11} - \overline{X_1}}{\sqrt{S_{11}}} & \frac{x_{11} - \overline{X_1}}{\sqrt{S_{12}}} & \dots & \frac{x_{1p} - \overline{X_p}}{\sqrt{S_{1p}}} \\ \frac{x_{21} - \overline{X_2}}{\sqrt{S_{12}}} & \frac{x_{11} - \overline{X_2}}{\sqrt{S_{22}}} & \dots & \frac{x_{2p} - \overline{X_p}}{\sqrt{S_{2p}}} \\ \vdots & \vdots & \dots & \vdots \\ \frac{x_{n1} - \overline{X_p}}{\sqrt{S_{1p}}} & \frac{x_{11} - \overline{X_p}}{\sqrt{S_{2p}}} & \frac{x_{np} - \overline{X_p}}{\sqrt{S_{np}}} \end{bmatrix}$$

$$(2.14)$$

UNIVERSITAS ISI AM NEGERI

Menghasilkan vektor rata-rata sampel:

$$\bar{Z} = \frac{1}{n} (1^{T}Z)^{T} = \frac{1}{n} Z^{T} 1 = \frac{1}{n} \sum_{j=1}^{n} \frac{X_{j1} - \overline{X_{1}}}{\sqrt{S_{11}}} \\ \sum_{j=1}^{n} \frac{X_{j1} - \overline{X_{1}}}{\sqrt{S_{11}}} \end{bmatrix} = 0,$$

$$\vdots$$

$$\sum_{j=1}^{n} \frac{X_{j1} - \overline{X_{1}}}{\sqrt{S_{11}}}$$
(2.15)

Dan matriks kovariansi

$$S_Z = \frac{1}{n-1} \left(Z - \frac{1}{n} 11^T Z \right)^T \left(Z - \frac{1}{n} 11^T Z \right)$$

$$= \frac{1}{n-1} (Z - 1 \bar{Z}^T)^T (Z - 1 \bar{Z}^T)$$
$$= \frac{1}{n-1} Z^T Z$$

$$= \frac{1}{n-1} \begin{bmatrix} \frac{(n-1)S_{11}}{S_{11}} & \frac{(n-1)S_{12}}{\sqrt{S_{11}}\sqrt{S_{22}}} & \dots & \frac{(n-1)S_{1p}}{\sqrt{S_{11}}\sqrt{S_{pp}}} \\ \frac{(n-1)S_{12}}{\sqrt{S_{11}}\sqrt{S_{22}}} & \frac{(n-1)S_{22}}{S_{22}} & \dots & \frac{(n-1)S_{2p}}{\sqrt{S_{22}}\sqrt{S_{pp}}} \\ \vdots & \vdots & \dots & \vdots \\ \frac{(n-1)S_{1p}}{\sqrt{S_{11}}\sqrt{S_{pp}}} & \frac{(n-1)S_{2p}}{\sqrt{S_{22}}\sqrt{S_{pp}}} & \dots & \frac{(n-1)S_{pp}}{S_{pp}} \end{bmatrix} = \mathbb{R}$$

$$(2.16)$$

Untuk setiap vektor pengamatan X. Komponen utama sampel dari pengamatan terbakukan diberikan sebagai berikut. Jika Z_1 , Z_2 ,..., Z_n adalah pengamatan-pengamatan terbakukan dengan matriks kovariansi sampel $R = \{r_{jk}\}$ dan pasangan nilai eigen - vektor eigen $(\widehat{\lambda}_1, \widehat{e}_1)$, $(\widehat{\lambda}_2, \widehat{e}_2)$,... $(\widehat{\lambda}_p, \widehat{e}_p)$, komponen utama sampel ke-i diberikan oleh :

$$\hat{y}_1 = \hat{e}_t^T Z = \hat{e}_{l1} Z_1 + \hat{e}_{l2} Z_2 + ... + \hat{e}_{lp} Z_p$$
, i= 1, 2,...,p

Dimana $\widehat{\lambda}_1 \geq \widehat{\lambda}_2 \geq ... \widehat{\lambda}_1 \geq 0$ dan Z adalah pengamatan pada variabelvariabel Z_1 , Z_2 ,..., Z_p . Yang mempunyai matriks kovariansi sampel sama dengan matriks korelasi R dari pengamatan X_1 , X_2 , X_3 ..., X_n . Pembakuan menghindari masalah adanya satu peubah dengan variansi besar yang terlalu mempengaruhi penentuan muatan faktor.

Penyelesaian komponen utama dari model faktor utama dari matriks kovariansi sampel S dinyatakan dalam bentuk pasangan nilai *eigen* dan vektor *eigen* $(\widehat{\lambda}_1, \widehat{e}_1), (\widehat{\lambda}_2, \widehat{e}_2), \dots (\widehat{\lambda}_p, \widehat{e}_p), \text{ dimana}, \widehat{\lambda}_1 \geq \widehat{\lambda}_2 \geq \dots \widehat{\lambda}_1 \geq 0, \text{ jika m} < p$

banyaknya faktor umum, matriks muatan atau bobot faktor yang ditaksir $\{\widehat{l_i}\}$ diberikan oleh :

$$\widehat{L} = \left[\sqrt{\widehat{\lambda}_{1}}, \widehat{e}_{1} \sqrt{\widehat{\lambda}_{2}}, \widehat{e}_{2}, \dots, \sqrt{\widehat{\lambda}_{m}}, \widehat{e}_{m} \right]$$
(2.17)

Taksiran variansi khusus diberikan oleh unsur-unsur diagonal dari S $-\widehat{L}\widehat{L}^T$

$$\text{Sehingga, } \widehat{\boldsymbol{\Psi}} = \begin{bmatrix} \widehat{\boldsymbol{\Psi}_1} & 0 & \cdots & 0 \\ 0 & \widehat{\boldsymbol{\Psi}_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \widehat{\boldsymbol{\Psi}_p} \end{bmatrix} \text{dengan } \widehat{\boldsymbol{\Psi}}_i = S_{ii} - \sum_{j=1}^m \widehat{l}_{ij}^2.$$

Communality ditaksir oleh
$$\hat{h}_l^2 = \hat{h}_{l1}^2 + \hat{h}_{l2}^2 + \dots + \hat{h}_{lm}^2$$
 (2.18)

Nilai dugaan l_{ij} yang diperoleh adalah :

$$l_{ij} = \frac{a_{ji}\sqrt{\lambda_j}}{s_{x_i}}$$
 atau $l_{ij} = a_{ij}\sqrt{\lambda_j}$ untuk variabel asal yang dibakukan. (2.19)

Dimana:

 $l_{ij}=$ adalah bobot (loading) dari variabel asal ke-i pada faktor ke-j

 a_{ij} = adalah koefisien variabel asal ke-i untuk komponen utama ke-j

 λ_{j} = adalah eigen value untuk komponen utama ke-j

 S_{x_i} = adalah simpangan baku variabel asal ke-j

Untuk menginterprestasi variabel asal diperlukan pemberian nama masingmasing faktor sesuai dengan besar harga mutlak $loadingl_{ij}$. harapan agar variabel asal hanya dominan di salah satu faktor saja tetapi terkadang semua itu tidak terpenuhi, maka diperlukan rotasi dari matriks loadingL yaitu dengan menggunakan teknik rotasi varimax. Jika matriks $L_{(p\ x\ m)}$ adalah muatan faktor yang diperoleh

dengan suatu metode penaksiran yaitu komponen utama dan maksimum $\label{eq:likelihood} \emph{likelihood} \emph{maka} \ \emph{matriks} \ \emph{bobot}(\emph{loading}) \ \emph{hasil} \ \emph{rotasi} \ \emph{L}^T \ \emph{dapat} \ \emph{dinyatakan} \ \emph{sebagai} \ \emph{L}^T = \ \emph{LT}, \ \emph{dimana} \ \emph{T} \ \emph{adalah} \ \emph{matriks} \ \emph{transformasi}.$

$$L = LT, dimana TTT = TTT = 1$$
 (2.20)

matriks $p \times m$ yang unsur-unsurnya adalah rotasi faktor. Dalam analisis faktor, perhatian biasanya dipusatkan pada parameter yang ada dalam model faktor. Tetapi, nilai-nilai taksiran faktor-faktor umum disebut *skor faktor*, juga diperlukan. Besaranbesaran ini sering digunakan untuk tujuan diagnosis dan juga sebagai masukan untuk analisis selanjutnya. Skor-skor bukan taksiran parameter yang tidak diketahui dalam arti yang biasa. Skor faktor adalah taksiran dari nilai-nilai untuk vektor faktor acak yang tidak teramati F_j , j = 1, 2, ...,n. Jadi, skor faktor \widehat{f}_j = taksiran dari nilai f_j yang dicapai oleh F_j (kasus ke-j).

Situasi penaksiran rumit karena fakta bahwa besaran-besaran yang tidak teramati f_j dan ε_j melebihi X yang teramati. Untuk mengatasi masalah ini, suatu pendekatan heuristik, tetapi beralasan dan sudah dikembangkan untuk menaksir nilainilai faktor. Untuk itu digunakan pendekatan metode kuadratik terkecil berbobot. Andaikan vektor rata-rata μ , muatan faktor L, dan variansi khas Ψ diketahui untuk model faktor pada persamaan (2.3). Faktor-faktor $\varepsilon^T = [\varepsilon_1, \varepsilon_2, ..., \varepsilon_p]$ sebagai kesalahan. Karena var $(\varepsilon_1) = \Psi_1$, i = 1, 2, ...,p tidak perlu sama. Maka kuadrat terkecil berbobot digunakan untuk menaksir nilai-nilai faktor umum. Jumlah kuadraat dari kesalahn, dibobot oleh kebaikan variansinya, yaitu:

$$\sum_{i=1}^{p} = \frac{\varepsilon_i^2}{\Psi_i} = \varepsilon^T \Psi^{-1} \varepsilon^{-1} (x - \mu - Lf)^T \Psi^{-1} (x - \mu - Lf)$$
 (2.21)

Barlet memilih taksiran \hat{f} dan f untuk meminimumkan jumlah kuadrat ini. Penyelesaian adalah :

$$\hat{f} = (L^{T} \Psi^{-1} L)^{-1} L^{T} \Psi^{-1} (x - \mu), \tag{2.22}$$

Dimotivasi oleh \hat{f} ini, di ambil taksiran \hat{L} , $\widehat{\Psi}$, dan $\hat{\mu}=\hat{x}$ seperti nilai- nilai sebenarnya dan mendapat skor faktor $\widehat{f_j}$ untuk kasus ke-j :

$$\widehat{f}_{j} = (\widehat{L}^{T} \widehat{\Psi}^{-1} \widehat{L})^{-1} \widehat{L}^{T} \widehat{\Psi}^{-1} (x_{j} - \widehat{x}), \tag{2.23}$$

Jika muatan-muatan faktor ditaksir oleh metode komponen utama, besaran ini mengasumsikan bahwa semua Ψ_i adalah sama atau hampir sama. Besarnya skor faktor dapat dinyatakan sebagai berikut :

$$\widehat{f}_{l} = (\widehat{L}^{T}\widehat{L})^{-1} \widehat{L}^{T} (x_{j} - \widehat{x}), \tag{2.24}$$

UNIVERSITAS ISLAM NEGERI

Atau untuk data terbakukan:

$$\widehat{f}_{J} = (\widehat{L}_{Z}^{T} \widehat{L}_{Z})^{-1} \widehat{L}_{Z}^{T} \widehat{L}_{j}$$

$$(2.25)$$

4. Proses Analisis Faktor

Proses dasar analisis faktor meliputi hal-hal berikut :

- Menentukan variabel apa saja yang akan dianalisis, variabel-variabel yang dipilih adalah variabel yang relevan dengan penelitian yang dilakukan dan harus didasarkan pada penelitian-penelitian terdahulu, teori dan pendapat peneliti sendiri.
- 2. Menghitung matriks korelasi dengan metode Bartlett test *of spericity* serta pengukuran MSA (*measure of sampling*).
 - a. Metode Bartlett test of spericity

Dalam analisis faktor, hasil yang diinginkan adalah adanya korelasi diantara satu variabel. Jika korelasi antar variabel kecil, maka kemungkinan besar variabel-variabel tersebut terletak pada faktor yang berbeda. Matriks korelasi, yang di bentuk dari data yang diperoleh hasil penelitian. Korelasi yang relatif tinggi antara variabel X_1 , X_2 ,..., X_n di harapkan berkorelasi dengan set indikator yang sama. jika nilai Bartlett hitung > Bartlett tabel, atau sign < Alpha 5% maka menunjukkan bahwa terjadi korelasi yang signifikan diantara variabel yang dianalisis dan proses dapat dilanjutkan. Misalkan Bartlett test of $sphericity = X^2$ untuk menguji apakah matriks yang trbentuk adalah matriks korelasi bukan matriks identitas dengan Ho: $\rho = I_{vxv}$ dan H1: $\rho \neq I_{vxv}$, dengan rumus: $X^2 = \{1/6 (2v+5) - (n-1)\}$ ln $|M_{vv}|$.

Dimana:

 15 Norusis, MJ, "Advanced Statistics SPSS/PC+for the IBM PC/XT/AT" (Michgigan Avenue Chicago Illinois : 1986).

¹⁶ McDonald, "factor analysis and related methods" (Hillsdale,NJ : Lawrence Erlbaum Associates publisher).

v = jumlah variabel

n = jumlah sampel

 $|M_{vv}|$ = determinan matriks korelasi dengan derajat kebebasan dk = ½ v (v-1).

b. Measure of sampling Adequancy (MSA).

dalam SPSS menggunakan indeks Kaiser Meyer Olkin, sehingga sering disebut *Kaiser Meyyer* (KMO) indeks yang digunakan untuk meneliti ketepatan analisis faktor dengan membandingkan koefisien korelasi sampel yang diobservasi denagan koefisien korelasi parsial. Nilai (KMO MSA) sebesar 0.5-1.0 menunjukkan bahwa proses analisis yang dilakukan sudah tepat dan dapat dilanjutkan.¹⁷ Dalam SPSS, ukuran kecukupan sampling untuk tiap variabel ditampilkan dalam tiap diagonal pada *anti image correlation matriks*. Jika ukuran MSA untuk variabel adalah kecil, maka variabel tersebut perlu dipertimbangkan untuk dieliminasi.

Rumus Uji KMO:

$$KMO = \frac{\sum \sum_{i=j} r_{ij}^{2}}{\sum \sum_{i=j} r_{ij}^{2} + \sum \sum_{i=j} a_{ij}^{2}}$$

$$i = 1, 2, ..., p ; j = 1, 2, ..., p$$
(2.26)

UNIVERSITAS ISLAM NEGERI

Dimana:

 r_{ij} = koefisien korelasi sederhana antara variabel i dan j

 a_{ij} = koefisien korelasi parsial antara variabel i dan j

¹⁷ Yusrisal, "Jurnal Pengujian validitas konstruk dengan menggunakan analisis faktro" (UNIMED : 2008).

Kriteria Uji KMO dari matriks antara variabel¹⁸

Untuk $0.9 < \text{KMO} \le 1.00$ data sangat baik,

Untuk $0.8 < \text{KMO} \le 0.9$ data baik

Untuk $0.7 < \text{KMO} \le 0.8$ data baik.

Untuk $0.6 < \text{KMO} \le 0.7$ data lebih dari cukup

Untuk $0.5 < \text{KMO} \le 0.6$ data cukup

 $KMO \le 0.5$ data tidak layak

3. Ekstraksi atau proses factoring.

Ekstraksi faktor adalah suatu metode yang digunakan untuk mereduksi data dari beberapa indikator untuk menghasilkan faktor yang lebih sedikit yang mampu menjelaskan korelasi antar indikator yang diobservasi. Metode yang digunakan untuk melakukan ekstraksi faktor adalah *principal component analysis, principal axis factoring, unweighted leastquares, generalized least squares, dan maximum likelihood.* Metode ekstraksi faktor yang digunakan dalam penelitian ini adalah metode PCA *Principal Component Analysis.* PCA *Principal Component Analysis* meupakan suatu teknik analisis untuk transformasi variabel-variabel asli yang masih saling berkorelasi satu dengan yang lain menjadi suatu variabel baru yang tidak berkorelasi, Hal ini dilakukan dengan cara menghilangkan korelasi diantara variabel

¹⁸ Norusis, "spss for windowsprofessional statistik"(Chicago: SPSS)

bebas melalui transformasi variabel bebas asal ke variabel baru yang tidak berkorelasi sama sekali atau yang biasa disebut dengan *principal component*. ¹⁹

Pendekatan *Principal Component Analysis* (PCA) jika diekstraksi dari matriks korelasi diperoleh faktor dengan beberapa kriteria sebagai berikut :

- b. *Communalities* adalah besarnya varian variabel yang disaring dengan variabel lainnya.
- c. Nilai eigen dengan persamaan karakteristiknya $|M_{vv} \cdot \lambda| = 0$ dengan > 1

4. Menentukan Jumlah Faktor

Penentuan jumlah faktor didasarkan pada besarnya *eigen value* setiap faktor yang muncul. *Eigen value* merupakan jumlah varian yang dijelaskan oleh setiap faktor. Maksdunya melakukan analisis faktor untuk mencari variabel baru yang disebut faktor yang saling berkorelasi, bebas atau satu sama lainnya, lebih sedikit jumlahnya daripada variabel asli, akan tetapi bisa menyerap sebagian informasi yang terkandung dalam variabel asli. Faktor-faktor inti yang dipilih adalah faktor yang memiliki *eigen value* > 1.

5. Rotasi Faktor-faktor

Rotasi faktor dilakukan untuk mempermudah interprestasi dalam menentukan variabel-variabel mana saja yang tercantum dalam suatu faktor karena terkadang ada

¹⁹ Hanna "Jurnal Property dan perdagangan sebagai sector dominan pada data bursa saham dengan menggunakan PCA" (UKSW: Prosiding seminar nasional sains dan pendidikan).

beberapa variabel yang mempunyai korelasi tinggi dengan lebih dari satu faktor atau jika sebagian *faktor loading* dari variabel bernilai dibawah terkecil yang telah ditetapkan. Suatu hasil atau output yang penting dalam analisis faktor ialah apa yang disebut matriks faktor pola (*factor pattern matrix*). Matriks faktor memuat/berisi koefisien yang dipergunakan untuk mengekspresikan variabel yang dibakukan (*standardized*) dinyatakan dalam faktor.

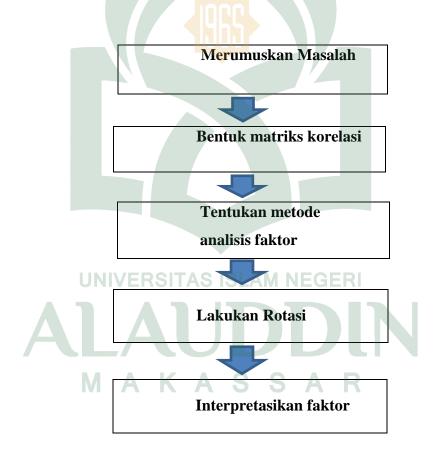
Hasil dari ekstraksi faktor tidak mempunyai arti jika tidak dirotasi karena rotasi ekstraksi berguna untuk memungkinkan penafsiran dan pengulasan ilmiah. Analisis faktor mempunya dua rotasi yaitu rotasi orthogonal dan rotasi oblique. Bagian dari rotasi orthogonal adalah varimax, Quartimax, dan equamax. Dalam penelitian ini digunakan rotasi varimax. Rotasi varimax adalah salah satu jenis rotasi orthogonal yang pilihannya ada pasa SPSS. Tujuan utama metode ini adalah untuk mendapatkan struktur faktor sehingga setiap variabel termuat tinggi hanya pada suatu faktor. Jadi, setiap variabel harus mempunyai muatan tinggi pada satu faktor dan nol pada faktor lain. Struktur faktor seperti ini mengindikasikan bahwa setiap faktor menyatakan sebuah konstruk yang berbeda. Jadi, rotasi varimax menghilangkan faktor umum²¹.

6. Menentukan Skor Faktor

-

²⁰ Jhonson and wichern, "*Applied Multivariate statistical*",(New Jersey: Prentice Hall International,1998).

²¹Johanes Supranto. *Analisis Multivariate Arti dan Interprestasi*, Jakarta : (PT. Rineka Cipta, 2004)h.128


Skor faktor adalah nilai-nilai untuk faktor acak yang tidak teramati. F_j , j=1, 2,...n. Jadi, skor faktor f_j (kasus ke-j). Pada persamaan (2.24), dari faktor yang terbentuk dapat memberikan penjelasan bahwa antara variabel di dalam faktor tertentu mempunyai hubungan yang sangat kuat. Namun terhadap variabel dalam faktor lain mempunyai hubungan yang relatif kecil. Sebagai tahap yang terakhir untuk memperoleh struktur yang berarti. Skor faktor adalah ukuran individual pada faktor yang merupakan nilai rata-rata terbobot.

Komponen hipotesis yang diturunkan harus memiliki sifat-sifat sebagai berikut: ²²

- 1. Komponen hipotesis tersebut diberi nama faktor .Faktor-faktor ini membentuk linearly independent set variabel. Tak ada faktor yang menjadi kombinasi linear dari faktor lain, sebab faktor-faktor tersebut dibuat sedemikian rupa sehingga bebas (independent) satu sama lain.
- 2. Variabel komponen hipotesis bisa dikelompokkan menjadi dua yaitu : common factors and unique factors. Dua komponen ini bisa dibedakan kalau dinyatakan dalam timbangan (weight) didalam persamaan linear, yang menurunkan variabel terobservasi dari variabel komponen hipotesis. Suatu commont factors mempunyai lebih dari suatu variabel dengan timbangan yang bukan nol atau factor loading yang terkait dengan faktor. Jadi hanya satu variabel yang tergantung dalam suatu faktor unik.

 $^{^{22}}$ Supranto, "Analysis Multivariat arti dan Interpretasi" (Jakarta : PT RINEKA CIPTA,2004).h.116

- 3. Common factor selalu dianggap tidak berkorelasi dengan faktor unik. Faktor unik biasanya juga dianggap tidak berkorelasi (mutually uncorrelated), akan tetapi common factor mungkin atau tidak mungkin berkorelasi satu sama lain. Umumnya dianggap bahwa jumlah common factor lebih sedikit dari jumlah variabel asli. Akan tetapi, banyaknya faktor unik biasanya dianggap sama dengan banyaknya variabel asli.
- 4. Langkah Langkah dalam analisis faktor

Gambar 1.1 langkah-langkah analisis faktor

C. Faktor Yang mempengaruhi seseorang dalam memilih sesuatu²³

Terdapat tiga faktor yang mempengaruhi seseorang dalam memilih sesuatu yaitu:

1. Pengaruh lingkungan, terdiri dari budaya, kelas sosial, keluarga, dan situasi. Sebagai dasar utama prilaku seseorang adalah memahami pengaruh lingkungan yang membentuk atau menghambat seseorang dalam mengambil keputusan komunikasi mereka. Seseorang hidup dalam lingkungan yang kompleks dimana prilaku keputusan mereka dipengaruhi oleh budaya, sosial, keluarga, dan situasi.

2. Motivasi dan Keterlibatan

Pengetahuan, sikap, kepribadian, gaya hidup, dan demografi. Perbedaan individu merupakan faktor internal (interpersonal) yang menggerakkan serta mempengaruhi prilaku seseorang. Pengetahuan, sikap, kepribadian, gaya hidup, dan demografi, akan memperluas pengaruh seseorang dalam proses pengambilan keputusan.

3. Proses psikologis NIVERSITAS ISLAM NEGERI

Terdiri dari pengolahan informasi, pembelajaran, perubahan sikap dan perilaku. Ketiga faktor psikologi tersebut menambah minat seseorang dalam pemilihan sesuatu.

²³ Novita Harahab, *Analisis faktor-faktor yang mempengaruhi keputusan mahasiswa dalam menenpuh pendidikan* (Medan : Tesis Program Paska Sarjana Ilmu Manajemen USU).

Banyak masalah penelitian memerlukan pengembangan instrument yang dapat dipercaya, serta mampu mengukur hal-hal yang abstrak seperti : kecerdasan, hasil belajar, motivasi, sikap minat, dan lain-lain.²⁴ Faktor-faktor yang mempengaruhi mahasiswa dalam menempuh pendidikan adalah proses, biaya, latarbelakang, social ekonomi, motivasi, fasilitas, referensi, lokasi, promosi, reputasi dan saran dari kerabat.²⁵

 24 Ary, Jacobs and Razavich, $pengantar\ penelitian\ dalam\ pendidikan.$ terj
mahan Arief Furchan (Surabaya : Usaha Nasional,1982). h.248

Novita, Analisis faktor-faktor yang mempengaruhi keputusan mahasiswa dalam menenpuh pendidikan pada politeknik LP3 (Medan : Universitas Sumatra Utara, 2004).

BAB III

METODE PENELITIAN

A. Jenis Penelitian

Jenis penelitian ini adalah jenis penelitian terapan, karena penulis menelaah sumber-sumber yang berkaitan dengan penelitian, dari sumber bacaan, buku multivariat dan buku-buku ilmu statistik lainnya, artikel atau internet, referensi yang berisi hasil penelitian sebelumnya atau beberapa tulisan yang berkaitan untuk menunjang penelitian.

B. Jenis Data dan Sumber Data

Jenis data yang digunakan dalam penelitaian ini adalah data primer, karena data diperoleh secara langsung dengan cara melakukan wawancara kepada Mahasiswa Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar.

C. Waktu dan Lokasi Penelitian TAS ISLAM NEGERI

Waktu yang digunakan dalam pelaksanaan penelitian ini adalah sekitar 2 bulan terhitung dari Juni 2014 sampai dengan Oktober 2014 dan lokasi penelitian adalah kampus UIN Alauddin Makassar Fakultas Sains dan Tehnologi.

D. Populasi dan sampel

- a. Populasi yang digunakan dalam penelitian ini adalah Mahasiswa Jurusan
 Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin
 Makassar.
- b. Sampelnya adalah sebagian Mahasiswa Matematika Fakultas Sains Dan
 Teknologi yang jumlahnya dibatasi sebanyak 75 mahasiswa.

E. Teknik pengambilan sampel

Teknik pengambilan sampel yang digunakan dalam penelitian ini adalah metode *Accidental Sampling*.

F. Teknik Pengumpulan data

Teknik pengumpulan data yang digunakan dalam penelitian ini yaitu teknik wawancara yang terstruktur. Siapa saja yang secara tidak sengaja bertemu dengan peneliti dan sesuai dengan karakteristik sampel, maka Mahasiswa tersebut dapat dijadikan sebagai informan untuk melakukan wawancara sesuai dengan pendoman wawancara yang berkaitan dengan penelitian. Pedoman wawancara berisi tentang alasan-alasan mahasiswa dahulu memilih Jurusan Matematika.

G. Variabel Penelitian A K A S S

Variabel yang digunakan dalam penelitian ini adalah variabel Promosi, Lokasi, Minat, Pekerjaan, Fasilitas, dan Sosial Ekonomi.

H. Definisi Operasional Variabel

Variabel-variabel dalam penelitian ini dirumuskan sebagai faktor atau konstruk, yaitu variabel yang dibentuk melalui dimensi-dimensi yang diamati atau indikator-indikator yang diamati. Pada penelitian ini menggunakan aspek promosi dan sosialisasi, lokasi dan gedung perkuliahan, fasilitas, minat, pekerjaan, sosial ekonomi.

a. Promosi

Promosi adalah upaya dari pihak Universitas untuk memberikan informasi.

b. Lokasi

Lokasi adalah berdasarkan kota dan kebudayaan yang ada di Makassar.

c. Fasilitas

Fasilitas adalah kesedian fasilitas yang dimilki oleh Universitas Islam Negeri Alauddin Makassar.

d. Minat

Hal-hal yang mendorong mahasiswa untuk meneruskan pendidikan di Universitas Islam Negeri Alauddin Makassar dan memilih Jurusan Matematika.

e. Pekerjaan

Prospek mahasiswa kedepan setelah lulus kuliah.

f. Sosial dan Ekonomi

Hal-hal yang melatar belakangi kadaan sosial ekonomi mahasiswa Universitas Islam Negeri Alauddin Makssar. Penelitian ini dikerjakan menggunakan kuesioner yang bertujuan untuk mengetahui faktor mahasiswa dalam memilih jurusan matematika dengan menggunakan beberapa aspek yang dapat diukur dengan penjabaran indikator sebagai berikut

Tabel 3.1 Daftar indikator dalam pemilihan jurusan Matematika Universitas Islam Negeri Alauddin Makassar :

No.	Aspek	Indikator	
1.	Promosi dan Sosialisasi	a) Jurusan matematika dapat diketahui	
		melalui iklan dan media massa	
		b) Promosi dikemas secara kreatif dan	
		menarik dengan berisi informasi lengkap	
		tentang jurusan matematika.	
		c) Sosialisasi jurusan Matematika yang	
		dilakukan disekolah-sekolah.	
		d) Sosialisasi dari alumni.	
		e) Agreditasi jurusan Matematika.	
2.	Lokasi dan Gedung	a) Gedung perkuliahan jurusan Matematika	
	perkuliahan	yang berdesain Timur Tengah	
	' A] A	b) Gedung perkuliahan jurusan Matematika	
	ALA	yang luas, nyaman, dan bersih.	
	МА	c) Lokasi perkuliahan Jurusan Matematika	
	IVI A	yang luas, nyaman, Asri, serta rindang	
		karena banyaknya pepohonan.	
		d) Lokasi perkuliahan Jurusan Matematika	
		yang mudah dijangkau.	
		e) Lokasi perkuliahan jurusan Matematika	

No.	Aspek	Indikator	
		yang jauh dari keramaian kota.	
3.	Fasilitas	a) Jurusan Matematika memiliki Lab	
		Komputer yang memadai	
		b) Jurusan Matematika memiliki	
		perpustakaan jurusan.	
		c) Pengajar yang ahli dan berkompeten	
		dibidang studi Matematika.	
5.	Minat	 a) senang belajar Matematika. b) Ilmu Matematika dapat diaplikasikan diberbagai bidang ilmu pengetahuan. c) Studi Matematika Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar yang diintegrasikan dengan ilmu Teknologi dan Agama Islam. a) Prospek dunia kerja program Studi Matematika yang memiliki peluang kerja yang baik. b) Lulusan jurusan Matematika yang dapat 	
	0:11 111111	diterima diberbagai tempat kerja	
6.	Sosial dan ekonomi ERS	 Ajakan teman dan kerabat. Saran Orang Tua. Latar belakang Orang Tua Tidak lulus dijurusan lain Biaya pendidikan di jurusan Matematika yang murah. Jarang terjadi tindakan kriminal seperti tauran. 	

I. Prosedur analisis data

- 1. Penentuan variabel yang akan dianalisis.
- 2. Menghitung matriks korelasi dengan metode *Bartlett test of spericity* serta pengukuran MSA (*Measure of Sampling*).
- 3. Proses Ekstraksi atau *Factoring*, menggunakan *Principal Component Analysis* (PCA).
- 4. Menentukan jumlah faktor yang paling berpengaruh dengan melihat nilai *eigen* value > 1.
- 5. Merotasi faktor untuk memperjelas posisi suatu variabel dengan menggunakan metode varimax.
- 6. Menginterpretasi faktor-faktor.

BAB IV

HASIL DAN PEMBAHASAN

A. HASIL

Faktor-faktor yang mempengaruhi mahasiswa dalam memilih Jurusan Matematika dapat diketahui dengan menggunakan metode analisis faktor. Tahapantahapan analisis faktor adalah sebagai berikut:

I. Uji korelasi dan kelayakan suatu variabel.

Tahap ini menguji korelasi variabel-variabel yang telah didefinisikan menggunakan Uji Barlett (Bartleet's Test of Sphericity) dan Kaiser meyer olkin Measure of Sampling Adequancy (MSA). Uji Barlett dan uji MSA dilakukan untuk menilai kelayakan suatu variabel yang akan dianalisis menggunakan analisis faktor. Denagan kriteria sebagai berikut:

a. Uji Barlett (Bartleet's Test of Sphericity)

Uji Barlett dalam analisis faktor adalah untuk menguji korelasi antar variabel karena hasil yang diinginkan dalam analisis faktor adalah adanya korelasi yang tinggi antar variabel, memiliki korelasi yang tinggi jika nilai Barlett hitung > Barlett tabel, atau p-value (sig) $< \infty = (0,05)$, maka menunjukkan nilai korelasi yang tinggi antar variabel dan proses dapat dilanjutkan. Hipotesa untuk signifikansi adalah :

ISLAM NEGERI

Ho = Tidak memilki korelasi

 H_1 = Memilki korelasi dan sampel memadai untuk dianalisis lebih lanjut.

Kriteria untuk melihat signifikansi adalah:

Nilai Sig $> \alpha = (0.05)$ maka Ho diterima, Sig $< \alpha = (0.05)$ maka Ho ditolak.

Tabel 4.1 Nilai KMO dan Bartlett's Test of Sphericity

KMO and Bartlett's Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy.

625

Bartlett's Test of Approx. Chi-Square 549.964 276 Sig. .000

Tabel 4.1 KMO dan *Bartleet's Test of Sphericity* menunjukkan bahwa sig $< \infty = 0.05$ dimana nilai sig pada tabel 0.000 < 0.05. Sehingga variabel-variabel berkorelasi dan dapat diproses lebih lanjut.

UNIVERSITAS ISLAM NEGERI

b. Uji Measure of Sampling Adequancy (MSA).

Uji MSA adalah uji yang digunakan untuk mengukur homogenitas antar variabel dan melakukan penyaringan antar variabel sehingga hanya variabel yang memenuhi syarat dapat diproses lebih lanjut. Dimana nilai MSA sebesar 0,5 – 1,0. Dengan kriteria sebagai berikut :

- MSA = 1 variabel tersebut dapat diprediksi tanpa kesalahan oleh variabel lain.
- MSA = 0,5 variabel dapat diprediksi dan bisa dianalisis lebih lanjut.

 MSA = variabel tidak dapat diprediksi dan tidak dianalisis lebih lanjut serta dikeluarkan dari variabel lainnya.

Terlihat pada Tabel 4.1 nilai KMO dan *Bartleet's Test of Sphericity* = 0,625 sehingga proses analisis faktor dapat dilanjut karena memenuhi syarat dimana nilai KMO hitung > KMO tabel yaitu 0,625 > 0,5.

Hipotesa varibel dapat dikatakan layak dan dapat diproses

Ho = Variabel tidak layak dan tidak dapat diproses lebih lanju.

 $H_1 = Variabel layak dan dapat diproses lebih lanjut.$

Kriteria untuk melihat signifikansi adalah:

Nilai Sig $< \alpha = (0.05)$ maka Ho diterima, Sig $> \alpha = (0.05)$ maka Ho ditolak.

Pada *image matrices* bagian *anti image correlation* dapat dilihat pada (Lampiran : 2) variabel-variabel yang terbentuk setelah uji MSA adalah sebagai berikut : UNIVERSITAS ISLAM NEGERI

Tabel 4.2 Nilai Anti Image Matrices Correlation variabel stelah uji MSA

MAKACC	N D	Nilai
M Variabel A S S	Nilai	standar
	MSA	minimum
Jurusan matematika dapat diketahui melalui iklan	0,602	0,5
dan media massa (X ₁)		
Promosi dikemas secara kreatif dan menarik dengan	0,591	0,5
berisi informasi lengkap tentang jurusan matematika		
(X_2)		
Sosialisasi jurusan Matematika yang dilakukan	0,507	0,5

Variabel	Nilai	Nilai standar
	MSA	minimum
disekolah-sekolah (X ₃)		
Sosialisasi dari alumni. (X ₄)	0,592	0,5
Agreditasi jurusan Matematika (X ₅)	0,669	0,5
Gedung perkuliahan jurusan Matematika yang berdesain Eropa dan mediterania (X ₆)	0,409	0,5
Gedung perkuliahan jurusan Matematika yang luas, nyaman, dan bersih (X ₇)	0,520	0,5
Lokasi perkuliahan Jurusan Matematika yang luas, nyaman, Asri, serta rindang karena banyaknya pepohonan (X ₈)	0,660	0,5
Lokasi perkuliahan Jurusan Matematika yang mudah dijangkau (X ₉)	0,611	0,5
Lokasi perkuliahan jurusan Matematika yang jauh dari keramaian kota (X ₁₀)	0,481	0,5
Jurusan Matematika memiliki Lab Komputer yang memadai (X ₁₁)	0,698	0,5
Jurusan Matematika memiliki perpustakaan jurusan (X_{12})	0,738	0,5
Pengajar yang ahli dan berkompeten dibidang studi Matematika (X ₁₃)	0,700	0,5
senang belajar Matematika (X ₁₄)	0,522	0,5
Ilmu Matematika dapat diaplikasikan diberbagai bidang ilmu pengetahuan (X ₁₅)	0,722	0,5
Studi Matematika Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar yang diintegrasikan dengan ilmu Teknologi dan Agama Islam (X ₁₆)	0,780 GERI	0,5
Prospek dunia kerja program Studi Matematika yang memiliki peluang kerja yang baik (X_{17})	0,722	0,5
Lulusan jurusan Matematika yang dapat diterima diberbagai tempat kerja (X ₁₈)	0,703	0,5
Ajakan teman dan kerabat (X ₁₉)	0,579	0,5
Saran Orang Tua (X ₂₀)	0,417	0,5
Latar belakang orang tua yang dari lulusan sarjana sains (21)	0,586	0,5
Tidak lulus dijurusan lain (22)	0,389	0,5
Biaya pendidikan yang murah (23)	0,590	0,5
Jarang terjadi tindak criminal seperti tauran (24)	0,514	0,5

Dari Tabel 4.2 Nilai *Anti Image Matrices Correlation* variabel stelah uji MSA, terdapat beberapa variabel yang tidak dapat dilanjutkan diantaranya :

- a. Sosialisasi jurusan Matematika yang dilakukan disekolah-sekolah (X_3) .
- b. Gedung perkuliahan jurusan Matematika yang berdesain Eropa dan Mediterania (X_6) .
- c. Senang belajar Matematika (X_{14}) .
- d. Saran Orang Tua (X_{20}) .
- e. Ajakan teman dan kerabat (X_{19}) .
- f. Tidak lulus dijurusan lain (22)

Terlihat pada Tabel 4.2 Nilai *Anti Image Matrices Correlation* variabel setelah uji MSA, variabel (X₂₂) tidak diikutkan karena memiliki nilai MSA terendah diantara variabel yang tidak memenuhi syarat untuk diproses lebih lanjut. Selanjutnya dari tabel *Anti Image Matrices* yang telah diproses dapat dilihat kembali variabel mana yang memiliki nilai MSA terendah maka akan dikeluarkan dari uji MSA selanjutnya.

Selanjutnya akan dilakukan pengulangan terhadap variabel-variabel yang memiliki nilai MSA > 0,5 terlihat pada tabel Tabel 4.2 variabel X_{22} dikeluarkan dari uji MSA. Maka hasil dari uji MSA Setelah variabel X_3 dikeluarkan dapat dilihat pada Tabel 4.3.

Tabel 4.3 Nilai Anti Image Matrices Correlation setelah variabel X_{22} dikeluarkan dari uji MSA

Variabel	Nilai MSA	Nilai standar minimum
Jurusan matematika dapat diketahui melalui iklan dan media massa (X_1)	0,621	0,5
Promosi dikemas secara kreatif dan menarik dengan berisi informasi lengkap tentang jurusan matematika (X_2)	0,594	0,5
Sosialisasi jurusan Matematika yang dilakukan disekolah-sekolah (X_3)	0,515	0,5
Sosialisasi dari alumni. (X ₄)	0,565	0,5
Agreditasi jurusan Matematika (X ₅)	0,681	0,5
Gedung perkuliahan jurusan Matematika yang berdesain Timur Tengah (X ₆)	0,399	0,5
Gedung perkuliahan jurusan Matematika yang luas, nyaman, dan bersih (X_7)	0,583	0,5
Lokasi perkuliahan Jurusan Matematika yang luas, nyaman, Asri, serta rindang karena banyaknya pepohonan (X ₈)	0,656	0,5
Lokasi perkuliahan Jurusan Matematika yang mudah dijangkau (X ₉)	0,661	0,5
Lokasi perkuliahan jurusan Matematika yang jauh dari keramaian kota (X_{10})	0,508	0,5
Jurusan Matematika memiliki Lab Komputer yang memadai (X_{11})	0,704	0,5
Jurusan Matematika memiliki perpustakaan jurusan (X_{12})	0,751	0,5
Pengajar yang ahli dan berkompeten dibidang studi Matematika (X_{13})	0,726	0,5
senang belajar Matematika (X ₁₄)	0,515	0,5
Ilmu Matematika dapat diaplikasikan diberbagai bidang ilmu pengetahuan (X ₁₅)	A 0,719	0,5
Studi Matematika Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar yang diintegrasikan dengan ilmu Teknologi dan Agama Islam (X ₁₆)	0,777	0,5
Prospek dunia kerja program Studi Matematika yang memiliki peluang kerja yang baik (X_{17})	0,738	0,5
Lulusan jurusan Matematika yang dapat diterima	0,696	0,5

Variabel	Nilai MSA	Nilai standar minimum
diberbagai tempat kerja (X ₁₈)		
Ajakan teman dan kerabat (X ₁₉)	0,503	0,5
Saran Orang Tua (X ₂₀)	0,461	0,5
Latar belakang Orang Tua (X ₂₁)	0,595	0,5
Biaya pendidikan di jurusan Matematika yang	0,588	0,5
$\operatorname{murah}(X_{23})$		
Jarang terjadi tindakan kriminal seperti tauran (X ₂₄)	0,553	0,5

Pada Tabel 4.3 Nilai *Anti Image Matrices Correlation* setelah variabel X₂₂ dikeluarkan dari uji terlihat pada (Lampiran : 3). Jadi variabel X₂₂ tidak diikutkan kembali pada proses uji MSA selanjutnya. Kemudian dilakukan perulangan pengujian terhadap variabel dengan kriteria MSA, dapat dilihat pada Tabel 4.4 sebagai berikut:

Tabel 4.4 Nilai *Anti Image Matrices Correlation* setelah variabel X₆ dikeluarkan dari uji MSA

		Nilai
Variabel	Nilai MSA	standar
		minimum
Jurusan matematika dapat diketahui melalui iklan	=G 0,632	0,5
dan media massa (X ₁)		
Promosi dikemas secara kreatif dan menarik dengan	0,617	0,5
berisi informasi lengkap tentang jurusan		
matematika (X ₂)		
Sosialisasi jurusan Matematika yang dilakukan	0,518	0,5
disekolah-sekolah (X ₃)	7	
Sosialisasi dari alumni. (X ₄)	0,579	0,5
Agreditasi jurusan Matematika (X ₅)	0,689	0,5
Gedung perkuliahan jurusan Matematika yang luas,	0,573	0,5
nyaman, dan bersih (X_7)		
Lokasi perkuliahan Jurusan Matematika yang luas,	0,664	0,5
nyaman, Asri, serta rindang karena banyaknya		
pepohonan (X ₈)		

Variabel	Nilai MSA	Nilai standar minimum
Lokasi perkuliahan Jurusan Matematika yang	0,662	0,5
mudah dijangkau (X ₉)	0.400	0.5
Lokasi perkuliahan jurusan Matematika yang jauh	0,480	0,5
dari keramaian kota (X_{10})	0.722	0.5
Jurusan Matematika memiliki Lab Komputer yang	0,732	0,5
memadai (X ₁₁)		
Jurusan Matematika memiliki perpustakaan jurusan	0,730	0,5
(X_{12})		
Pengajar yang ahli dan berkompeten dibidang studi	0,732	0,5
Matematika (X ₁₃)		
senang belajar Matematika (X ₁₄)	0,524	0,5
Ilmu Matematika dapat diaplikasikan diberbagai	0,729	0,5
bidang ilmu pengetahuan (X ₁₅)		
Studi Matematika Jurusan Matematika Fakultas	0,792	0,5
Sains dan Teknologi Universitas Islam Negeri		
Alauddin Makassar yang diintegrasikan dengan		
ilmu Teknologi dan Agama Islam (X ₁₆)		
Prospek dunia kerja program Studi Matematika	0,738	0,5
yang memiliki peluang kerja yang baik (X ₁₇)		
Lulusan jurusan Matematika yang dapat diterima	0,693	0,5
diberbagai tempat kerja (X ₁₈)		
Ajakan teman dan kerabat (X ₁₉)	0,525	0,5
Saran Orang Tua (X ₂₀)	0,453	0,5
Latar belakang Orang Tua (X ₂₁)	0,589	0,5
Biaya pendidikan di jurusan Matematika yang	EG 0,642	0,5
$\operatorname{murah}(X_{23})$		
Jarang terjadi tindakan kriminal seperti tauran (X ₂₄)	0,558	0,5
ALAUDI		

Dari Tabel 4.4 Nilai *Anti Image Matrices Correlation* variabel X_6 dikeluarkan dari uji MSA karena tidak memenuhi kriteria uji MSA. Setelah variabel X_6 maka terlihat variabel X_{20} yang memiliki nilai MSA terkecil terdapat pada Lampiran 4, jadi variabel X_{20} harus dikeluarkan dari uji MSA selanjutnya karena tidak sesuai dengan kriteria uji MSA.

Tabel 4.5 Nilai Anti Image Matrices Correlation setelah variabel X_{20} dikeluarkan dari uji MSA

Variabel	Nilai MSA	Nilai standar minimum
Jurusan matematika dapat diketahui melalui iklan dan media massa (X_1)	0,622	0,5
Promosi dikemas secara kreatif dan menarik dengan berisi informasi lengkap tentang jurusan matematika (X_2)	0,624	0,5
Sosialisasi jurusan Matematika yang dilakukan disekolah-sekolah (X ₃)	0,503	0,5
Sosialisasi dari alumni. (X ₄)	0,552	0,5
Agreditasi jurusan Matematika (X ₅)	0,694	0,5
Gedung perkuliahan jurusan Matematika yang luas, nyaman, dan bersih (X ₇)	0,564	0,5
Lokasi perkuliahan Jurusan Matematika yang luas, nyaman, Asri, serta rindang karena banyaknya pepohonan (X_8)	0,657	0,5
Lokasi perkuliahan Jurusan Matematika yang mudah dijangkau (X ₉)	0,710	0,5
Lokasi perkuliahan jurusan Matematika yang jauh dari keramaian kota (X_{10})	0,492	0,5
Jurusan Matematika memiliki Lab Komputer yang memadai (X_{11})	0,764	0,5
Jurusan Matematika memiliki perpustakaan jurusan (X_{12})	0,742 E GER I	0,5
Pengajar yang ahli dan berkompeten dibidang studi Matematika (X_{13})	0,741	0,5
senang belajar Matematika (X ₁₄)	0,489	0,5
Ilmu Matematika dapat diaplikasikan diberbagai bidang ilmu pengetahuan (X ₁₅)	0,723	0,5
Studi Matematika Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar yang diintegrasikan dengan ilmu Teknologi dan Agama Islam (X ₁₆)	0,794	0,5
Prospek dunia kerja program Studi Matematika yang memiliki peluang kerja yang baik (X ₁₇)	0,733	0,5
Lulusan jurusan Matematika yang dapat diterima diberbagai tempat kerja (X ₁₈)	0,695	0,5
Ajakan teman dan kerabat (X ₁₉)	0,502	0,5

Variabel	Nilai MSA	Nilai standar minimum
Latar belakang Orang Tua (X ₂₁)	0,621	0,5
Biaya pendidikan di jurusan Matematika yang murah (X_{23})	0,634	0,5
Jarang terjadi tindakan kriminal seperti tauran (X ₂₄)	0,552	0,5

Dari Tabel 4.5 Nilai *Anti Image Matrices Correlation* setelah variabel X_{20} dikeluarkan dari uji MSA terlihat variabel X_{14} yang memiliki nilai MSA terendah, jadi variabel X_{14} tidak diikutkan dari uji selanjutnya karena tidak sesuai dengan kriteria uji MSA. X_{14} memiliki nilai MSA yang sama jadi kedua variabel ini dikeluarkan secara bersama sama karena keduanya tidak sesuai dengan kriteria MSA. Kedua variabel X_{14} dikeluarkan dari uji selanjutnya terlihat pada Lampiran 5.

Tabel 4.6 Nilai *Anti Image Matrices Correlation* setelah variabel X₁₄ dikeluarkan dari uji MSA.

		Nilai
Variabel	Nilai MSA	standar
UNIVERSITAS ISLAM NI	EGERI	minimum
Jurusan matematika dapat diketahui melalui iklan	0,612	0,5
dan media massa (X ₁)		
Promosi dikemas secara kreatif dan menarik dengan	0,709	0,5
berisi informasi lengkap tentang jurusan		
matematika (X_2)	AR	
Sosialisasi jurusan Matematika yang dilakukan	0,487	0,5
disekolah-sekolah (X ₃)		
Sosialisasi dari alumni. (X ₄)	0,549	0,5
Agreditasi jurusan Matematika (X ₅)	0,697	0,5
Gedung perkuliahan jurusan Matematika yang luas,	0,634	0,5
nyaman, dan bersih (X_7)		
Lokasi perkuliahan Jurusan Matematika yang luas,	0,679	0,5
nyaman, Asri, serta rindang karena banyaknya		

Variabel	Nilai MSA	Nilai standar minimum
pepohonan (X ₈)		
Lokasi perkuliahan Jurusan Matematika yang mudah dijangkau (X ₉)	0,784	0,5
Lokasi perkuliahan jurusan Matematika yang jauh dari keramaian kota (X_{10})	0,529	0,5
Jurusan Matematika memiliki Lab Komputer yang memadai (X ₁₁)	0,782	0,5
Jurusan Matematika memiliki perpustakaan jurusan (X_{12})	0,771	0,5
Pengajar yang ahli dan berkompeten dibidang studi Matematika (X ₁₃)	0,786	0,5
Ilmu Matematika dapat diaplikasikan diberbagai bidang ilmu pengetahuan (X ₁₅)	0,754	0,5
Studi Matematika Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar yang diintegrasikan dengan ilmu Teknologi dan Agama Islam (X ₁₆)	0,794	0,5
Prospek dunia kerja program Studi Matematika yang memiliki peluang kerja yang baik (X_{17})	0,721	0,5
Lulusan jurusan Matematika yang dapat diterima diberbagai tempat kerja (X_{18})	0,691	0,5
Ajakan teman dan kerabat (X ₁₉)	0,500	0,5
Latar belakang Orang Tua (X ₂₁)	0,617	0,5
Biaya pendidikan di jurusan Matematika yang murah (X ₂₃)	0,602 EGERI	0,5
Jarang terjadi tindakan kriminal seperti tauran (X ₂₄)	0,536	0,5

Dari Tabel 4.6 Nilai *Anti Image Matrices Correlation* setelah variabel X₁₄ dikeluarkan dari uji MSA terlihat variabel X₃ yang memiliki nilai MSA terendah, jadi variabel X₃ tidak diikutkan dari uji selanjutnya karena tidak sesuai dengan kriteria uji MSA. X₃ memiliki nilai MSA yang sama jadi kedua variabel ini dikeluarkan secara bersama sama karena keduanya tidak sesuai dengan kriteria MSA. Kedua variabel X₃ dikeluarkan dari uji selanjutnya terlihat pada Lampiran 6.

Tabel 4.7 Nilai Anti Image Matrices Correlation setelah variabel X_3 dikeluarkan dari uji MSA.

Variabel	Nilai MSA	Nilai standar minimum
Jurusan matematika dapat diketahui melalui iklan	0,571	0,5
dan media massa (X ₁)	0.601	0.5
Promosi dikemas secara kreatif dan menarik dengan	0,681	0,5
berisi informasi lengkap tentang jurusan matematika (X ₂)		
Sosialisasi dari alumni. (X ₄)	0,529	0,5
Agreditasi jurusan Matematika (X ₅)	0,329	0,5
Gedung perkuliahan jurusan Matematika yang luas,	0,717	0,5
nyaman, dan bersih (X_7)	0,033	0,5
Lokasi perkuliahan Jurusan Matematika yang luas,	0,735	0,5
nyaman, Asri, serta rindang karena banyaknya		
pepohonan (X ₈)		
Lokasi perkuliahan Jurusan Matematika yang	0,775	0,5
mudah dijangkau (X ₉)		0 7
Lokasi perkuliahan jurusan Matematika yang jauh	0,529	0,5
dari keramaian kota (X_{10})	0.706	0.7
Jurusan Matematika memiliki Lab Komputer yang memadai (X_{11})	0,786	0,5
Jurusan Matematika memiliki perpustakaan jurusan	0,771	0,5
(X_{12})	- 7 - 1	
Pengajar yang ahli dan berkompeten dibidang studi	0,801	0,5
Matematika (X ₁₃) INIVERSITAS ISI AM NI	EGERI	
Ilmu Matematika dapat diaplikasikan diberbagai	0,771	0,5
bidang ilmu pengetahuan (X ₁₅)		
Studi Matematika Jurusan Matematika Fakultas	0,785	0,5
Sains dan Teknologi Universitas Islam Negeri		
Alauddin Makassar yang diintegrasikan dengan	ΛР	
ilmu Teknologi dan Agama Islam (X ₁₆)	A N	0.7
Prospek dunia kerja program Studi Matematika	0,751	0,5
yang memiliki peluang kerja yang baik (X ₁₇) Lulusan jurusan Matematika yang dapat diterima	0,738	0,5
diberbagai tempat kerja (X_{18})	0,736	0,5
Ajakan teman dan kerabat (X ₁₉)	0,499	0,5
Latar belakang Orang Tua (X ₂₁)	0,657	0,5
Biaya pendidikan di jurusan Matematika yang	0,614	0,5
murah (X ₂₃)		

Variabel	Nilai MSA	Nilai standar minimum
Jarang terjadi tindakan kriminal seperti tauran (X ₂₄)	0,599	0,5

Dari Tabel 4.7 Nilai *Anti Image Matrices Correlation* setelah variabel X_3 dikeluarkan dari uji MSA terlihat variabel X_{19} yang memiliki nilai MSA terendah, jadi variabel X_{19} tidak diikutkan dari uji selanjutnya karena tidak sesuai dengan kriteria uji MSA. X_{19} memiliki nilai MSA yang sama jadi kedua variabel ini dikeluarkan secara bersama sama karena keduanya tidak sesuai dengan kriteria MSA. Kedua variabel X_{19} dikeluarkan dari uji selanjutnya terlihat pada Lampiran 7.

Tabel 4.8 Nilai *Anti Image Matrices Correlation* setelah variabel X₁₉ dikeluarkan dari uji MSA.

		Nilai
Variabel	Nilai MSA	standar
		minimum
Jurusan matematika dapat diketahui melalui ikla	n 0,565	0,5
dan media massa (X ₁)		
Promosi dikemas secara kreatif dan menarik den	,	0,5
berisi informasi lengkap tentang jurusan	/I NEGERI	
matematika (X ₂)		
Sosialisasi dari alumni. (X ₄)	0,527	0,5
Agreditasi jurusan Matematika (X ₅)	0,711	0,5
Gedung perkuliahan jurusan Matematika yang lu	ias, 0,649	0,5
nyaman, dan bersih (X_7)	SAR	
Lokasi perkuliahan Jurusan Matematika yang lu	as, 0,733	0,5
nyaman, Asri, serta rindang karena banyaknya		
pepohonan (X ₈)		
Lokasi perkuliahan Jurusan Matematika yang	0,778	0,5
mudah dijangkau (X ₉)		
Lokasi perkuliahan jurusan Matematika yang jau	ıh 0,526	0,5
dari keramaian kota (X ₁₀)		
Jurusan Matematika memiliki Lab Komputer ya	ng 0,782	0,5

Variabel	Nilai MSA	Nilai standar minimum
memadai (X ₁₁)		
Jurusan Matematika memiliki perpustakaan jurusan	0,782	0,5
(X_{12})		
Pengajar yang ahli dan berkompeten dibidang studi	0,804	0,5
Matematika (X ₁₃)		
Ilmu Matematika dapat diaplikasikan diberbagai	0,772	0,5
bidang ilmu pengetahuan (X_{15})		
Studi Matematika Jurusan Matematika Fakultas	0,804	0,5
Sains dan Teknologi Universitas Islam Negeri		
Alauddin Makassar yang diintegrasikan dengan		
ilmu Teknologi dan Agama Islam (X ₁₆)		
Prospek dunia kerja program Studi Matematika	0,762	0,5
yang memiliki peluang kerja yang baik (X ₁₇)		
Lulusan jurusan Matematika yang dapat diterima	0,732	0,5
diberbagai tempat kerja (X ₁₈)		
Latar belakang Orang Tua (X ₂₁)	0,626	0,5
Biaya pendidikan di jurusan Matematika yang	0,615	0,5
murah (X ₂₃)		
Jarang terjadi tindakan kriminal seperti tauran (X ₂₄)	0,588	0,5

Dari tabel Uji MSA 4.2 sampai dengan Tabel 4.8 Uji MSA menunjukkan bahwa terdapat beberapa variabel yang memiliki nilai MSA dibawah 0,5, sehingga setiap variabel harus dikeluarkan dari uji MSA selanjutnya. Setelah variabel yang tidak memenuhi syarat MSA dikeluarkan satu persatu maka terbentuklah suatu variabel yang memiliki nilai *loading* > 0,5.

II. Proses faktoring atau ekstraksi

Proses faktoring atau ekstraksi adalah proses pemisahan variabel-variabel yang memenuhi korelasi dari nilai MSA, diamana suatu variabel dikatakan berkorelasi jika nilai MSA lebih besar 0,5. Metode yang digunakan adalah *Principal*

Components Analysis (PCA). Jumlah variabel yang akan diekstraksi terlihat pada tabel 4.9 konstribusi variabel hasil ekstraksi.

Tabel 4.9 Kontribusi Variabel hasil Ekstraksi

	Initial	Extraction
X1	1.000	.518
Х2	1.000	.628
X4	1.000	.573
X5	1.000	.514
Х7	1.000	.637
Х8	1.000	.568
Х9	1.000	.411
X10	1.000	.775
X11	1.000	.640
X12	1.000	.633
X13	1.000	.590
X15	1.000	.584
X16	1.000	.740
X17	1.000	.699

Communalities

Extraction Method: Principal Component Analysis.

1.000

1.000

000

788

450 462

550

X18

Tabel 4.9 konstribusi variabel hasil ekstraksi menunjukkan nilai variabel terhadap faktor yang terbentuk. Semakin besar konstribusi sebuah variabel, maka semakin erat hubugan dengan faktor yang terbentuk. Selanjutnya dari Tabel 4.9 akan menunjukkan hasil ekstraksi yang lebih spesifik dengan menggunakan metode *Principal Components Analysis* (PCA) terlihat pada nilai Eigenvalue lebih besar atau

sama dengan 1,0. Hasil spesifik ekstraksi PCA terlihat pada Tabel 4.8 Hasil Ekstraksi PCA sebagai berikut :

Tabel 4.8 Hasil Ekstraksi PCA

Component	Initial Eigenvalues				
	Total	% of Variance	Cumulative %		
1	4.088	22.712	22.712		
2	2.431	13.507	36.220		
3	1.743	9.685	45.904		
4	1.351	7.503	53.407		
5	1.148	6.378	59.786		
6	.966	5.367	65.153		
7	.901	5.004	70.157		
8	.857	4.763	74.920		
9	.759	4.219	79.139		
10	.623	3.464	82.603		
11	.582	3.232	85.834		
12	.544	3.021	88.855		
13	.459	2.548	91.403		
14	.366	2.031	93.434		
15	.360	1.998	95.431		
16	NIVE.31317	AS ISLATET N	EGER97.168		
17	.272	1.510	98.678		
18	.238	1.322	100.000		

Extraction Method: Principal Component Analysis.

Pada Tabel 4.9 Hasil Ekstraksi PCA merupakan tabel hasil ekstraksi dari sejumlah variabel yang mempengaruhi mahasiswa dalam memilih jurusan Matematika. Total variabel yang memiliki korelasi adalah 18 variabel, selanjutnya pada Tabel 4.10 total hasil ekstraksi, akan terlihat jumlah faktor hasil ekstraksi.

Tabel 4.10 Jumlah faktor hasil Ekstraksi (PCA)

Extraction Sums of							
	Squared Loading						
Total	% of Variance	Cumulative %					
4,088	22,712	22,712					
2,431	13,507	36,220					
1,743	9,685	45,905					
1,351	7,503	53,407					
1,148	6,378	59,786					

Dari 18 variabel hasil ekstraksi, terbentuk 5 faktor terlihat pada Tabel 4.10 Jumlah faktor hasil Ekstraksi (PCA), dari 5 faktor yang terbentuk terlihat semua faktor memilki nilai eigen > 1, misalkan pada kolom total faktor 1 = 4,088 > 1. Selain dari tabel total varian, terdapat pula grafik yang menjelaskan dasar perhitungan dalam menentukan jumlah faktor, terlihat pada grafik *Scree Plot*. Bentuk grafik *Scree Plot* yang bersesuaian dengan tabel Tabel 4.10 dapat dilihat pada gambar 4.1 *Scree Plot* sebagai berikut:

MAKASSAR

Gambar 4.1 Scree plot hasil Ekstraksi faktor

Pada Gambar 4.1 *Scree Plot* terlihat bahwa dari titik 1 ke titik dua menurun sangat tajam, kemudian dari titik 2 ketitik 3 masih terlihat perbedaan selanjutnya pada titik 3 ketitik 4 dan 5 tidak terlalu berbeda ini menandakan bahwa.

III. Rotasi Faktor

Variabel-variabel yang telah diekstraksi akan dilakukan proses rotasi karena biasanya dalam penempatan variabel belum tepat atau masih ada variabel yang tidak sesuai dengan faktor. Proses rotasi dilakukan pada variabel yang lolos dalam uji MSA. Component matrix dapat menentukan konstribusi variabel terhadap faktor yang terbentuk. Distribusi variabel terlihat pada Tabel 4.11 *Component Matrix* sebelum

rotasi *Variamx*. Hasil Tabel 4.11 *Component Matrix* sebelum rotasi *Variamx* menunjukkan bahwa tiap-tiap variabel berada pada masing-masing kelompok faktor.

Tabel 4.11 *Component Matrix* sebelum rotasi *Varimax*

Component Matrix^a

			Component		
	1	2	3	4	5
X1	030	.434	.570	053	.032
X2	.259	.600	.427	133	.034
X4	031	.517	142	.525	092
X5	.469	.386	.276	.260	.042
X7	.354	.406	495	271	166
Х8	.420	.598	084	066	151
Х9	.339	.265	.430	112	.169
X10	.315	176	.248	.365	.670
X11	.689	156	228	237	.182
X12	.693	155	024	317	.165
X13	.668	056	200	.117	.296
X15	.675	257	.091	210	099
X16	.781	292	.068	119	159
X17	.669	228	.031	.269	355
X18	.511	173	.294	.438	468
X21	.111	.589	216	133	.163
X23	.227	.457	436	.098	046
X24	.207	047	460	.492	.224

Extraction Method: Principal Component Analysis.

Dari hasil komponen faktor masih sulit menentukan posisi yang tepat terhadap variabel, misalnya pada variabel X_{23} yang memilki niali *Loading* atau nilai korelasi pada faktor satu sebesar = (0,457), faktor lima = (-0,436), oleh karena itu komponen faktor harus dirotasi, Rotasi faktor akan memperjelas posisi sebuah variabel tanpa dengan melihat nilai *loading* terbesar tanpa melihat (+) dan (-). Setelah diketahui bahwa faktor yang terbentuk adalah 5 maka Tabel 4.11 *Component Matrix* setelah

a. 5 components extracted.

Rotasi menunjukan distribusi 18 variabel terhadap 5 faktor yang terbentuk. Hasil rotasi dapat dilihat pada Tabel 4.12 *Component Matrix* sebagai berikut :

4.12 Component Matrix setelah Rotasi

Rotated Component Matrix^a

	Component					
	1	2	3	4	5	
X1	185	043	.688	017	088	
X2	.033	.248	.750	.015	057	
X4	472	.468	.106	.233	.256	
X5	.080	.245	.513	.328	.277	
X7	.286	.721	057	041	173	
Х8	.136	.629	.359	.145	059	
Х9	.220	.006	.596	.027	.087	
X10	.198	282	.219	011	.780	
X11	.750	.198	052	.042	.183	
X12	.776	.079	.111	.050	.102	
X13	.534	.232	003	.148	.479	
X15	.692	032	.083	.311	030	
X16	.732	003	.049	.450	.016	
X17	.397	.063	044	.726	.096	
X18	.132	085	.116	.864	.057	
X21		567	240	260	.057	
X23	004	.669	037	.033	.110	
X24	006	.274	355	.141	.573	

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

Hasil rotasi pada Tabel 4.12 *Component Matrix* setelah rotasi, menunjukkan bahwa semua variabel memilki kelompok faktor, variabel X_{23} yang sebelumnya belum jelas berada pada faktor bearapa, setelah melakukan rotasi variabel X_{23} berada pada kelompok faktor 2 yang memiliki nilai loading terbesar yaitu (0,669). Dari

a. Rotation converged in 7 iterations.

Tabel 4.12 maka faktor dapat dikelompokkan sesuai dengan variabel pembentuknya dapat dilihat pada Tabel 4.13 sebagai berikut :

Tabel 4.13 Kelompok faktor hasil rotasi

Variabel		Kelo	mpok fakt	or	
v uriuoci	1	2	3	4	5
X_1			3		
X_2			3		
X_4		2			
X_5			3		
X_7		2			
X_8		2			
X_9			3		
X_{10}					5
X_{11}	1				
X_{12}	1				
X_{13}	1				
X ₁₅	1				
X_{16}	1				
X ₁₇				4	
X_{18}				4	
X_{21}		2			
X ₂₃		2			
X ₂₄					5
U	NIVERS	SITAS IS	LAM N	EGERI	

Dari Tabel 4.13 terlihat bahwa semua faktor memilki variabel pembentuk dimana :

- faktor 1 memiliki 5 variabel pembentuk
- faktor 2 memiliki 5 variabel pembentuk
- faktor 3 memiliki 4 variabel pembentuk
- faktor 4 memiliki 2 variabel pembentuk
- faktor 5 memiliki 2 variabel pembentuk

Nilai *loading* mengindentifikasikan korelasi antar variabel dengan faktor yang terbentuk. Semakin tinggi nilai *loading* berarti semakin erat hubungan variabel terhadap faktor. Dari Tabel 4.13 kelompok faktor hasil rotasi menunjukkan semua variabel membentuk suatu faktor berdasarkan nilai *loading* terbesarnya, sehingga faktor diinterpretasikan pada Tabel 4.14 hasil interpretasi variabel sebagai berikut:

Tabel 4.14 Hasil interpretasi variabel

No.	Variabel	Faktor	Eigen	Loading	%variance	Kumulatif
			values	faktor		%
1	X ₁₁			0,750		
2	X_{12}			0,776		
3	X_{13}	Faktor	4,088	0,534	22,712	22,712
		keistimewaan				
4	X ₁₅	dan fasilitas		0,692		
5	X ₁₆			0,732		
6	X_4			0,464		
	X_7	Faktor Lokasi		0,721		
7	A (dan sosial	2,431	0,721	13,507	36,220
8.	X_8	WONWERSI	1 A5 15 L	0,629	iER,307	30,220
9.	X_{21}			0,567		
10	X_{23}			0,669		
11	X_1	MAK	A S	0,688	R	
12	X_2			0,750		
13	X_5	Faktor promosi	1,743	0,513	9,685	45,904
14	X_9			0,596		
15	X ₁₇			0,726		

No.	Variabel	Faktor	Eigen	Loading	%variance	Kumulatif
			values	faktor		%
16	X_{18}	Faktor	1,351	0,864	7,503	53,407
		pekerjaan				
17	X_{10}					
		Faktor	1,148	0,780	6,378	59,786
		kenyamanan				
18	X_{24}			0,573		

Berdasarkan Tabel 4.12 maka faktor yang terbentuk adalah:

$$F_1 = 0.750X_{11} + 0.776X_{12} + 0.534X_{13} + 0.692X_{15} + 0.732X_{16}$$

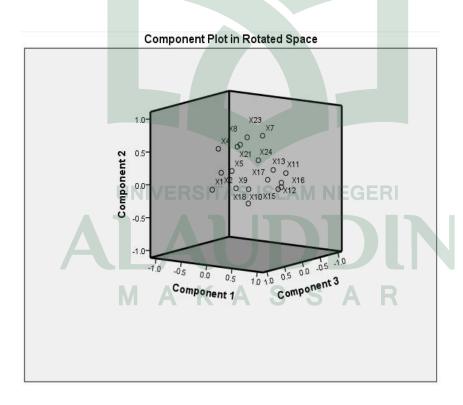
$$F_2 = 0,468 X_4 + 0,721 X_7 + 0,629 X_8 + 0,567 X_{21} + 0,669 X_{23}$$

$$F_3 = 0.688X_1 + 0.750X_2 + 0.513X_5 + 0.596X_9$$

$$F_4 = 0.726X_{17} + 0.864X_{18}$$

$$F_5 = 0,\!780X_{10} + 0,\!573X_{24}$$

Setiap variabel berkorelasi dengan faktor yang terbentuk ini dapat terlihat dari cara mengkuadratkan nilai korelasi yang terdapat pada Tabel 4.14 berdasarkan persamaan (2.7), misalkan variabel Jurusan matematika dapat diketahui melalui iklan dan media massa (X_1) adalah :


$$X_1 = h_i^2 + \Psi_i$$

= $I_{i1}^2 + I_{i2}^2 + \dots + I_{im}^2$

$$=(-0.030)^2 + (0.434)^2 + (0.570)^2 + (-0.053)^2 + (0.032)^2$$

$$= 0,0009 + 0,188356 + 0,3249 + 0,002809 + 0,001024$$

= 0,517989. terbukti nilai ekstraksi dapat dilihat pada tabel ekstraksi. dapat dilihat pada (lampiran 8) hasil ekstraksi.

Berdasarkan Tabel 4.14 *Component Matrix* setelah Rotasi terdapat Gambar 4.2 yang merupakan komponen atau jumlah anggota variabel dalam faktor. Gambar 4.2 merupakan gambaran letak dan komponen variabel dalam faktor jadi gambar ini sebagai sarana untuk memperjelas letak suatu variabel sehingga memudahkan untuk mengetahui letak variabel dalam faktor.

Gambar 4.2 Component Plot In Rotated Space

Dari Gambar 4.2 *Component Plot In Rotated Space* dapat terlihat bahwa komponen terdiri dari variabel-variabel pembentuk faktor.

B. PEMBAHASAN

I. Uji Korelasi

a. Uji KMO dan *Bartleet's Test of Sphericity* pada tahap ini untuk melihat korelasi antar variabel-variabel pembentuk faktor. Hipotesa untuk signifikansi adalah:

Ho = sampel (variabel) belum memadai untuk dianalisis lebih lanjut

H1 = sampel (variabel) memadai untuk dianalisis lebih lanjut

Sedangkan kriteria dalam melihat signifikansi adalah :

Sig > 0.05 maka Ho diterima

Sig < 0,05 maka Ho ditolak

Terlihat pada Tabel 4.1 KMO dan *Bartleet's Test of Sphericity* nilai KMO 0,546 sehingga asumsi H₁ diterima dan Ho ditolak. Dengan demikian variabel **UNIVERSITAS ISLAM NEGERI** dapat dianalisis lebih lanjut karena memilki korelasi antar variabel, serta memilki nilai sig < 0,05 sehingga Ho ditolak yang dimana H1 diterima, maka sampel atau variabel dapat dianalisis lebih lanjut.

b. Uji Measure of sampling Adequency (MSA)

Uji *Measure of sampling Adequency* (MSA) yang dilakukan untuk menganalisis setiap variabel, dimana setiap variabel dianalisis untuk mengetahui variabel mana yang dapat diperoses lebih lanjut dan mana yang harus dikeluakan. Pada *image matrices* bagian *anti image correlation* pada angka korelasi yang bertanda a (arah diagonal dari kiri atas kekanan bawah), Terlihat untuk semua variabel tidak memiliki nilai MSA > 0,5 maka variabel tersebut tidak dapat dilanjutkan. Nilai MSA berkisar 0 sampai dengan 1 Jika MSA = 1 variabel tersebut dapat diprediksi tanpa kesalahan oleh variabel yang lain dan jika nilai MSA > 0,5 variabel masih bisa diprediksi dan bisa dianalisis lebih lanjut sedangkan jika MSA< 0,5 variabel tidak bisa diprediksi dan dikeluarkan dari variabel lainnya. Sehingga terlihat pada tabel 4.2 tidak semua variabel memenuhi nilai MSA seperti halnya variabel X₂₂ yang memiliki nilai MSA 0,389 < 0,5 sehingga variabel tidak dapat dilanjutkan karena tidak memenuhi syarat atau kriteria.

Setelah variabel X_{22} dikeluarkan dari uji, selanjutnya variabel yang lolos dianalisis kembali dengan cara sebelumnnya sampai semua variabel memenuhi nilai MSA. Terlihat pada Tabel 4.3 variabel X_6 telah dikeluarkan dari uji analisis kriteria MSA, selanjutnya pada Tabel 4.3 terlihat masih ada variabel yang tidak memenuhi syarat sehingga harus diproses kembali. pada Tabel 4.3 terlihat variabel X_6 yang memilki nilai MSA 0,409 < 0,5 sehingga variabel X_{14} harus dikeluarkan dari uji.

Selanjutnya pada Tabel 4.4 terlihat variabel X_{20} yang tidak memenuhi kriteria dan memiliki nilai MSA terendah sehingga variabel X_{20} harus dikeluarkan dari uji, nilai MSA $X_{20}=0.417<0.5$. Selanjutnya terlihat pada Tabel 4.5 masih

terdapat variabel yang tidak memenuhi syarat nilai MSA, pada Tabel 4.5 variabel yang tidak memenuhi syarat adalah variabel X₁₄. Pada Tabel 4.5 terlihat variabel X₁₄ memiliki nilai MSA terkecil, jadi kedua variabel tidak dapat dilanjutkan. Pada Tabel 4.6 terlihat variabel X₃ yang tidak memenuhi nilai MSA sehingga variabel X₃ dikeluarkan dari uji selanjutnya. Pada Tabel 4.7 masih terlihat variabel X₉ sehingga pengujian MSA kembali dilakukan. Sehingga pada uji selanjutnya variabel terlihat memenuhi syarat MSA terlihat pada Tabel 4.8 variabel-variabel yang lolos dapat dilanjutkan untuk uji selanjutnya.

II. Factoring atau ekstraksi

Proses faktoring adalah melakukan ekstraksi terhadap variabel sehingga membentu suatu faktor.

a. Menentukan kumulatif

Sebelum melakukan *factoring* atau ekstraksi terlebih dahulu perhatikan Tabel 4.9 konstribusi variabel hasil Ekstraksi. Variabel yang ada dalam Tabel 4.9 adalah **UNIVERSITAS ISLAM NEGERI** variabel yang telah lolos dari uji MSA, dari Tabel 4.9 dapat terlihat *Communality* variabel yang terbentuk. *Communality* adalah nilai yang menunjukkan kontribusi variabel terhadap suatu faktor yang terbentuk atau *communality* menunjukkan beberapa varian yang dapat dijelaskan oleh faktor yang diekstrak.

Setiap variabel berkorelasi dengan faktor-faktor yang terbentuk, ini dapat terlihat dari cara mengkuadratkan nilai korelasi yang terdapat pada Tabel 4.10

Pada Tabel 4.9 konstribusi variabel hasil ekstraksi menunjukkan besarnya variansi variabel yang disaring dengan variabel lainnya. Pada variabel X_1 nilai extraction adalah 0,558 berarti sekitar 55,8% variansi dari variabel X_1 dapat dijelaskan oleh faktor yang nanti terbentuk. Semakin besar *Communality* sebuah variabel, berarti semakin erat hubungannya dengan faktor yang terbentuk. Konstribusi variabel adalah sebagai berikut:

- a. Pada variabel X_1 nilai *extraction* adalah 0,518 berarti sekitar 51,8% variansi dari variabel X_1 dapat dijelaskan oleh faktor yang nanti terbentuk.
- b. Pada variabel X_2 nilai *extraction* adalah 0,628 berarti sekitar 62,8% variansi dari variabel X_2 dapat dijelaskan oleh faktor yang nanti terbentuk.
- c. Pada variabel X₄ nilai *extraction* adalah 0,573 berarti sekitar 57,3% variansi dari variabel X₄ dapat dijelaskan oleh faktor yang nanti terbentuk.
- d. Pada variabel X_5 nilai *extraction* adalah 0,514 berarti sekitar 51,4% variansi dari variabel X_5 dapat dijelaskan oleh faktor yang nanti terbentuk.
- e. Pada variabel X_7 nilai *extraction* adalah 0,637 berarti sekitar 63,7% variansi dari variabel X_7 dapat dijelaskan oleh faktor yang nanti terbentuk.
- f. Pada variabel X_8 nilai *extraction* adalah 0,568 berarti sekitar 56,8% variansi dari variabel X_8 dapat dijelaskan oleh faktor yang nanti terbentuk.

- g. Pada variabel X₉ nilai *extraction* adalah 0,411 berarti sekitar 41,1% variansi dari variabel X₉ dapat dijelaskan oleh faktor yang nanti terbentuk.
- h. Pada variabel X_{10} nilai *extraction* adalah 0,775 berarti sekitar 77,5% variansi dari variabel X_{10} dapat dijelaskan oleh faktor yang nanti terbentuk.
- i. Pada variabel X_{11} nilai *extraction* adalah 0,640 berarti sekitar 64,0% variansi dari variabel X_{11} dapat dijelaskan oleh faktor yang nanti terbentuk.
- j. Pada variabel X_{12} nilai *extraction* adalah 0,633 berarti sekitar 63,3% variansi dari variabel X_{12} dapat dijelaskan oleh faktor yang nanti terbentuk.
- k. Pada variabel X_{13} nilai *extraction* adalah 0,590 berarti sekitar 59,0% variansi dari variabel X_{13} dapat dijelaskan oleh faktor yang nanti terbentuk.
- l. Pada variabel X_{15} nilai *extraction* adalah 0,584 berarti sekitar 58,4% variansi dari variabel X_{15} dapat dijelaskan oleh faktor yang nanti terbentuk.
- m. Pada variabel X_{16} nilai *extraction* adalah 0,740 berarti sekitar 74,0% variansi dari variabel X_{16} dapat dijelaskan oleh faktor yang nanti terbentuk.
- n. Pada variabel X_{17} nilai *extraction* adalah 0,699 berarti sekitar 6,99% variansi dari variabel X_{17} dapat dijelaskan oleh faktor yang nanti terbentuk.
- o. Pada variabel X_{18} nilai *extraction* adalah 0,788 berarti sekitar 7,88% variansi dari variabel X_{18} dapat dijelaskan oleh faktor yang nanti terbentuk.
- p. Pada variabel X_{21} nilai *extraction* adalah 0,450 berarti sekitar 45,0% variansi dari variabel X_{21} dapat dijelaskan oleh faktor yang nanti terbentuk.
- q. Pada variabel X_{23} nilai *extraction* adalah 0,462 berarti sekitar 46,2% variansi dari variabel X_{23} dapat dijelaskan oleh faktor yang nanti terbentuk.

r. Pada variabel X_{24} nilai *extraction* adalah 0,550 berarti sekitar 55,0% variansi dari variabel X_{24} dapat dijelaskan oleh faktor yang nanti terbentuk

b. Proses Ekstraksi untuk menentukan faktor.

Dari hasil Tabel 4.10 hasil ekstraksi menggunakan PCA terlihat jumlah variabel yang telah diekstrak yaitu 18 variabel, dan faktor yang terbentuk sebanyak 5 faktor ini terlihat dari nilai eigen > 1. Nilai eigen yang < 1 maka tidak dapat dijadikan sebagai faktor sebuah fariabel. Pada Tabel 4.10 terlihat kolom total terdapat 5 Komponen yang nilainya > 1, ini menandakan bahwa terdapat 5 faktor yang terbentuk, nilai eigen diurutkan dari yang terbesar ke yang terkecil dalam penentuan faktor. Jadi faktor-faktor yang terbentuk dapat dilihat sebagai berikut :

Sesuai kriteria nilai eigen hanya komponen 1 sampai 5 yang terbentuk sebagai faktor karena memilki nilai eigen > 1, dan komponen yang lain dianggap tidak memilki korelasi terhadap faktor yang terbentuk, karena memilki nilai eigen < 1. Pada Tabel 4.10 Jumlah hasil ekstraksi terlihat lebih jelas faktor yang terbentuk UNIVERSITAS ISLAM NEGERI dengan melihat nilai eigen dan variansi serta kumulatif.

Pada Tabel 4.10 Sesuai dengan jumlah faktor yang terbentuk yaitu sebanyak 5 faktor maka besaran varinsi dari setiap faktor maupun oleh keseluruhan faktor yang terbentuk adalah:

• Faktor 1 = 22,712 dari 100% jumlah variansi, yaitu dengan cara (total variabel faktor 1 atau nilai eigen faktor 1 ÷ jumlah variabel x 100 %).

- = $4,088 / 18 \times 100\% = 22,712 \%$. Artinya bahwa dari 100% jumlah variansi hanya 22,712 % variansi yang dapat dijelaskan oleh faktor 1 berdasarkan variabilitas pembentuk faktor 1.
- Faktor 2 = 13,507 dari 100% jumlah variansi, yaitu dengan cara (total variabel faktor 2 atau nilai eigen faktor 2 ÷ jumlah variabel x 100 %). = 2,431 / 18 x 100% = 13,505 %. Artinya bahwa dari 100% jumlah variansi hanya 13,505 variansi yang dapat dijelaskan oleh faktor 2 berdasarkan variabilitas pembentuk faktor 2.
- Faktor 3 = 9,685 dari 100% jumlah variansi, yaitu dengan cara (total variabel faktor 3 atau nilai eigen faktor 3 ÷ jumlah variabel x 100 %).
 - = 1,743 / 18 x 100% = 9,683 % Artinya bahwa dari 100% jumlah variansi hanya 9,683 % variansi yang dapat dijelaskan oleh faktor 3 berdasarkan variabilitas pembentuk faktor 3.
- Faktor 4 = 7,503 dari 100% jumlah variansi, yaitu dengan cara (total variabel faktor 4 atau nilai eigen faktor 4 ÷ jumlah variabel x 100 %).
 - = 1,351 / 18 x 100% = 7,505 % Artinya bahwa dari 100% jumlah variansi hanya 7,505 % variansi yang dapat dijelaskan oleh faktor 4 berdasarkan variabilitas pembentuk faktor 4.
- Faktor 5 = 6,378 dari 100% jumlah variansi, yaitu dengan cara (total variabel faktor 5 atau nilai eigen faktor 5 ÷ jumlah variabel x 100 %).

= 1,148 / 18 x 100% = 6,377 % Artinya bahwa dari 100% jumlah variansi hanya 6,377 % variansi yang dapat dijelaskan oleh faktor 5 berdasarkan variabilitas pembentuk faktor 5.

Jadi kumulatif faktor yang terbentuk adalah:

- Faktor 1 = 22,712 dari 100% jumlah kumulatif, artinya bahwa kumulatif faktor 1 adalah 22,712.
- Faktor 2 = jumlah (kumulatif faktor 1) 22,712 + 13,507 (variansi vaktor 2) = 36,220, artinya 36,220 kumulatif yang dapat terbentuk oleh vaktor 2.
- Faktor 3 = jumlah (kumulatif faktor 2) 36,220 + 9,685 (variansi vaktor 3) = 45,904. Artinya 45,904 kumulatif yang dapat terbentuk oleh vaktor 3.
- Faktor 4 = jumlah (kumulatif faktor 3) 45,904 + 7,503 (variansi vaktor 4) = 53,407 artinya 53,407 kumulatif yang dapat terbentuk oleh vaktor 4.
- Faktor 5 = jumlah (kumulatif faktor 4) 53,407 + 6,378 (variansi vaktor 5) = 59,786 artinya 59,786 kumulatif yang dapat terbentuk oleh vaktor 5.

UNIVERSITAS ISLAM NEGERI

Faktor yang terbentuk dapat pula terbentuk dengan grafik yaitu dengan melihat gambar *Scree Plot*. Pada gambar 4.1 *Scree Plot* menggambarkan bahwa suatu faktor yang terbentuk sejumlah 5 faktor ini terlihat dari gambar membentuk 5 titik yang dimana titik tidak ada yang nilainya < 1, ini menandakan faktor yang terbentuk adalah 5. Batas nilai eigen adalah 1 jadi apabila pada gambar yang nilainya < 1 maka tidak terdapat variabel pembentuk faktor. Dengan demikian, dari gambar 4.1 tampak

bahwa 5 faktor yang terbentuk. Hal ini berarti sama dengan hasil pendefinisian sebelumnya.

Pada gambar 4.1 *Scree Plot* bahwa titik 1 ke titik 2 terlihat perbedaan jarak yang tajam, ini menandakan bahwa korelasi antar faktor 1 dengan faktor 2 jauh berbeda, untuk titik 2 ke titik 3 masih terlihat perbedaan, untuk titik selanjutnya terlihat bahwa perbedaan jarak yang tidak jauh berbeda sampai titik ke-5. Jadi ke-5 faktor ini dapat menjelaskan ke-16 variabel asli.

III Proses Rotasi

Rotasi faktor memperjelas posisi sebuah variabel, dimasukkan pada faktor yang satu, dua, atau pada faktor yang lain. Tabel 4.9 *Component Matrix* sebelum rotasi *Variamx*, menunjukkan hasil yang tidak jelas bedanya sehingga masih sulit untuk diinterpretasikan masuk kedalam faktor yang mana. Oleh karena itu dilakukan rotasi, rotasi yang digunakan adalam penlitian ini adalah rotasi varimax karena rotasi varimax memilki tujuan untuk meminimalkan variabel dengan melihat faktor loading yang terbesar, sehingga sangat cocok dalam penentuan faktor yang mempengaruhi mahasiswa dalam memilih jurusan Matemtika.

Pada Tabel 4.12 *Component Matrix* setelah rotasi *Variamx* terlihat variabel yang telah diinterpretasikan sesuai dengan nilai korelasi yang terbesar, penenpatan variabel terhadap faktor terlihat dari nilai korelasi yang tertinggi tanpa harus melihat nilai korelasi (+) dan (-).

Nilai *loading* mengindetifikasikan korelasi antar variabel dengan faktor yang terbentuk. Semakin tinggi nilai *loading* berarti semakin erat hubungan variabel terhadap faktor. Dari Tabel 4.12 *Component Matrix* setelah rotasi *Variamx* menunjukkan semua variabel membentuk suatu faktor berdasarkan nilai *loading* terbesarnya, sehingga dapat disimpulkan dalam Tabel 4.14 hasil interpretasi variabel, dapat terlihat bahwa faktor yang terbentuk yaitu 5 faktor dengan masing-masing nilai eigen > 1.

Variabel-variabel yang telah dikelompokkan diberi nama, dimana nama faktor tergantung dari variabel yang membentuknya. Sehingga pemberian nama ini bersifat subjektif serta tidak ada ketentuan yang pasti mengenai pemberian nama tresebut. Pemberian nama faktor dijelaskan sebagai berikut:

a. Faktor 1 yaitu Keistimewaan dan Fasilitas

Faktor pertama diberi nama keistimewaan karena variabel yang mewakili terdiri dari X_{11} = Jurusan Matematika memiliki Lab Komputer yeng memadai, X_{12} = jurusan Matematika memiliki perpustakaan jurusan, X_{13} = Jurusan Matematika memiliki pengajar yang ahli dan berkompeten, X_{15} = Ilmu matematika dapat diaplikasikan diberbagai bidang ilmu pengetahuan, X_{16} = Studi Matematika Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar yang diintegrasikan dengan ilmu Teknologi dan Agama Islam. faktor keistimewaan mampu menjelaskan keragaman variansi sebesar = 22,712%. Jika

dilihat dari nilai *loading*, variabel yang paling berpengaruh terhadap faktor keistimewaan adalah variabel X_{12} = Jurusan Matematika memiliki perpustakaan jurusan dengan nilai korelasi = 0,776 karena memiliki nilai *loading* kemudian variabel X_{11} = 0,750, X_{16} = 0,732, X_{15} = 0,692, X_{13} = 0,534.

Faktor Fasilitas merupakan salah satu faktor yang mempengaruhi Mahasiswa dalam memilih Jurusan Matematika karena faktor fasilitas memiliki variabel X_{12} yang merupakan variabel yang memiliki nilai loading yang tinggi. Variabel X_{12} jurusan Matematika memiliki perpustakaan jurusan. Selain itu hal yang istimewah adalah karena Jurusan Matematika fakultas Sains dan Teknologi yang diintegrasikan dengan agama islam.

b. Faktor 2 yaitu Gedung Perkuliahan dan Sosial.

Faktor Gedung Perkuliahan dan Sosial adalah faktor kedua yang dapat mempengaruhi mahasiswa dalam memilih jursan Matematika. Karena faktor ini memiliki keragaman variansi sebesar = 13,507 %. Faktor Gedung Perkuliahan dan Sosial terdiri dari variabel X_4 , X_7 , X_8 , X_{21} , X_{23} . variabel X_7 memiliki nilai *loading* = 0,738 dan variabel X_8 memiliki nilai *loading* = 0,616, variabel X_{21} = 0,475, variabel X_{21} = 0,648.

variabel yang memiliki korelasi yang tinggi terhadap faktor Gedung Perkuliahan dan Sosial adalah variabel X_7 karena memiliki nilai loading = 0,738. Faktor kenyamanan, dan kebersihan Gedung sangat berpengaruh dalam pemilihan

Jurusan Matematika. faktor Gedung Perkuliahan dan Sosial adalah faktor yang berpengaruh terhadap mahasiswa dalam memilih jurusan Matematika karena memilki gedung perkuliahan jurusan Matematika yang luas, nyaman, dan bersih, sehingga calon mahasiswa tertarik untuk memilih jurusan Matematika. Gedung perkuliahan yang luas, nyaman, dan bersih adalah salah satu daya tarik. Kenyamanan adalah salah satu faktor yang dipertimbangkan dalam memilih jurusan karena untuk apa memilih jurusan jika tidak nyaman dalam menjalaninya.

c. Faktor 3 yaitu promosi

Faktor yang ketiga adalah faktor promosi karena memiliki nilai eigen 1,743 dan variansi sebesar = 9,685, faktor ini terdiri dari variabel X_1 = 0,688, X_2 = 0,750, X_5 = 0,513, X_9 = 0,596. Variabel yang paling berpengaruh terhadap faktor promosi adalah variabel X_2 = 0,750 karena memiliki nilai *loading* tertinggi dibanding variabel lain yang berada dalam faktor promosi. Faktor promosi merupakan salah satu faktor yang mempengaruhi mahasiswa dalam memilih Jurusan Matematika karena faktor promosi terdiri dari variabel X_2 = promosi dikemas secara kretif dan menarik dengan berisi informasi lengkap tentang Jurusan Metematika. Faktor promosi berpengaruh dalam pemilihan jurusan Matematika karena faktor promosi merupakan faktor penyampaian adanya suatu Jurusan. Faktor promosi dapat memperkenalkan keberadaan jurusan Matematika secara lengkap yang dikemas secara kreatif dan menarik. Sehingga calon mahasiswa dapat mengenal Jurusan Matematika dan mengetahui keberadan Jurusan Matematika, karena tanpa diketahui

keberadaan Jurusan Matematika calon mahasiswa tidak akan memilih Jurusan Matematika. Jadi faktor promosi merupakan salah satu faktor yang berpengaruh terhadap mahasiswa dalam memilih jurusan matematika.

d. Faktor 4 yaitu pekerjaan

Faktor yang keempa adalah faktor pekerjaan karena faktor ini memiliki nilai eigen = 1,351 dan nilai variansi = 7,503. Faktor pekerjaan terdiri dari variabel X_{17} = 0,726, dan variabel X_{18} = 0,864. Variabel yang memiliki nilai korelasi yang tinggi adalah X_{18} = 0,864. Faktor pekerjaan adalah faktor yang berpengaruh terhadap mahasiswa dalam memilih jurusan Matematika karena Mahasiswa pasti akan mencari jurusan yang memiliki prospek dunia kerja yang baik.

e. Faktor 5 yaitu kenyamanan

Faktor kenyamanan adalah salah satu faktor yang mempengaruhi mahasiswa dalam memilih Jurusan Matematika karena memiliki nilai eigen = 1,148 dan variansi = 6,378%. Faktor kemudahan terdiri dari variabel X_{10} = 0,780, X_{24} = 0,573. Dimana variabel X_{24} = jarang terjadi tindakan kriminal seperti tauran, faktor ini merupaka hal yang mempengaruhi mahasiswa dalam memilih Jurusan Matematika karena jarang terdengar tindak kriminal dan bahkan hampir tidak pernah terdengar mahasiswa Jurusan Matematika melakukan tindakan kriminal ini adalah salah satu faktor yang dipertimbangkan calon mahasiswa dalam memilih jurusan.

BAB V

PENUTUP

A. Kesimpulan

Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar terdiri dari 19 variabel yang dikelompokkan menjadi 5 faktor yaitu: faktor pertama adalah keistimewaan dan Fasilitas dengan nilai eigen sebesar 4,088%, faktor yang kedua adalah faktor Gedung perkuliahan dan Sosial dengan nilai eigen sebesar 2,431%, faktor yang ketiga yaitu faktor promosi dengan nilai eigen sebesar 1,743%, faktor yang keempat adalah faktor pekerjaan dengan nilai eigen sebesar 1,351%, faktor yang kelima adalah faktor kenyamananan dengan nilai eigen sebesar 1,148%.

B. Saran

Dalam skripsi ini tidak membahas semua teknik dalam analisis faktor kiranya pada penelitian selanjutnya menggunakan beberapa metode dalam mengekstrak variabel, serta penelitian ini dapat dikembangkan menggunakan analisis diskriminan, klaster, analis jalur, dan alisis lainnya.

DAFTAR PUSTAKA

- Ali Baroroh, *Analisis Multivariat dan Time series dengan SPSS 21* Jakarta : PT Elex Media Komputindo ,2013.
- Al-hasan Abu Muqatil bin Sulaiman bin Basyir al-Azdi al-Balkhiyyi, Tafsir Muqatil bin Sulaiman. Dar Ihya'al-Turas. 1423
- Daniel, Mueller. *Measuring Social Attitudes* London: Teacher College, Columbia University. 1982.
- Dedi, *pengertian Matematika*. http://dedi26.blogspot.com/2013/apa itu matematika. pengertian. html. (diakses 10 mei 2014).
- Departemen Agama RI, Al-karim Al-Quran dan terjemahannya.
- Frederick, Brown. *Principles of Education and Psychological Testing*. New York: Holt, Rinehart and Winston. 1985.
- Hanna, Deva Widyananto. Jurnal Property dan perdagangan sebagai sector dominan pada data bursa saham dengan menggunakan PCA. UKSW: Prosiding seminar nasional sains dan pendidikan. 2010.
- Harahab, Novita. Analisis faktor-faktor yang mempengaruhi keputusan mahasiswa dalam menenpuh pendidikan. Medan : Tesis Program Paska Sarjana Ilmu Manajemen USU.
- Jhonson and wichern. *Applied Multivariate statistical*. New Jersey: Prentice Hall International. 1998.
- Jhonson, Richard, and Wichern. *Applied Multivariate Statistical Analysisi*, New Jersey: University of Wisconsin, Prentice Hall inc. 1982.
- Johanes Supranto. *Analisis Multivariate Arti dan Interprestasi*, Jakarta: PT. Rineka Cipta. 2004.
- Jum, Nunnaly. *Introduction to Psychological Measurement*. New York: McGraw Hill Book Company. 1970.
- Kriswanto, Joni. *Analisis Faktor*.http://jonikriswanto.blogspot.com/search/label/analisis faktor.(diakses 16 mei 2014).

Margono, Gaguk, The Development Of Instrument For Measuring Attitides toward Statistik Using Semantik Differential scale. Jurnal International Seminar on Quality and Affordable Education (ISQAE), Jakarta: UNJ, 2013. M. Quraish Shihab. Tafsir Al-Mishbah Jakarta: Lentera Hati. 2002. Tafsir Al-Mishbah Jakarta: Lentera Hati. 2002. McDonald. Factor Analysis and Related Methods Hillsdale, NJ: Lawrence Erlbaum Associates publisher. 1985. Novita. Analisis faktor-faktor yang mempengaruhi keputusan mahasiswa dalam menenpuh pendidikan pada politeknik LP3 Medan : Universitas Sumatra Utara. 2004. Norusis, MJ. Spss For Windowsprofessional Statisti. Chicago: SPSS. 1993. . Advanced Statistics SPSS/PC+for the IBM PC/XT/AT. Michgigan Avenue Chicago Illinois: 1986. Purwaningsih, Anik. Penentuan rotasi yang sesuai dalam analisis faktor dengan analisis procrustes. Batan : Pusat Pengembangan dan Teknologi dan Komputasi. Salim, Afif. Matematika Terapan http://www.shideshare.net/affifsalim/matematika terapan. (Diakses 5 Mei 2014). Sulaiman bin Ahmad bin Ayyub bin Muthayyar lil Khumyi al-syam abu al-Qasim al-Thabrani, al-Mu'jam al-Ausat, kairoh: Dar al-Haramain. Santoso, Singgih. Satistik Multivariat. Jakarta: Elex Media Komputindo. 2014. Supranto. Analysis Multivariat arti dan Interpretasi. Jakarta: PT RINEKA CIPTA. 2004. Faktor. http://lilikfe.staff.uns.ac.id/2008/09/18/uji-validitas-Susianto. *Analysis* confirmatory-faktor-analysis. (16 Mei 2014). Suyanto. Metode Statistika Multivariat. Jakarta: Departemen Pendidikan dan Kebudayaan. 1988). Tiro, Muhammad Arif. Dasar-dasar Statistika. Makassar: Andira Publisher, 2008. ____. Analisis Faktor. Makassar : Andira Publisher. 2006.

Wijaya. Toni. Analisis multivariate. Yogyakarta: Universitas atmajaya. 2010.

W, Wiersma. Education Measurement and Testing. Boston: Allyn and Bacon, 1986.

Yusrisal. Jurnal Pengujian validitas konstruk dengan menggunakan analisis faktro. (UNIMED : 2008).

LAMPIRAN-LAMPIRAN

A. LAMPIRAN HASIL

B. VALIDASI PROGRAM

C. PEDOMAN WAWANCARA

D. PERSURATAN

UNIVERSITAS ISLAM NEGERI

ALAUDDIN M A K A S S A R

A. LAMPIRAN HASIL

- 1. Lampiran Data wawancara
- 2. Lampiran Anti Image Korelasion 1
- 3. Lampiran Anti Image Korelasion 2
- 4. Lampiran Anti Image Korelasion 3
- 5. Lampiran Hasil Ekstraksi.

UNIVERSITAS ISLAM NEGERI

ALAUDDIN M A K A S S A B

TIM VALIDASI-PROGRAM STUDI MATEMATIKA Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

A. Input Program

	1			_	,	-																		
x1	x2	х3	x4	x5	х6	x7	x8	x9	x10	x11	x12	x13	x14	x15	x16	x17	×1.8	x19	×20	x21	x22	x23	x24	t
2	3	1	2	3	2	4	2	3	2	3	4	3	2	4	4	4	3	2	3	3	2	1	2	
3	3	3	3	3	3	3	3	2	2	2	2	4	4	3	3	4	3	2	2	3	1	2	4	-
2	1	2	3	3	2	3	3	3	4	3	3	4	4	3	3	3	3	3	3	2	2	2	4	
1	2	4	2	3	2	3	3	1	1	4	4	4	3	3	4	4	2	2	2	2	4	3	1	
2	2	3	1	2	3	3	3	1	4	4	3	4	3	4	4	3	2	1	1	2	4	2	4	1000
2	1	2	1	2	3	3	3	3	3	2	2	2	4	3	2	2	2	1	1	1	4	2	4	
3	3	3	2	4	3	2	3	1	4	2	3	3	_1	4	3	3	3	1	4	1	- 4	1	2	-
2	1	1	1	1	3	2	2	2	1	3	3	. 2	4	4	3	2	2	3	1	1	4	1	3	-
2	2	3	2	3	2	3	2	2	2	3	3	3	2	2	3	3	3	2	2	2	3	3	3	
3	2	2	2	3	4	3	3	3	3	3	3	2	3	4	4	4	4	2	2	1	2	2	4	-
3	2	3	2	3	3	2	3	2	3	2	3	3	2	2	3	3	3	2	2	2	2	2	2	_
4	2	2	2	4	3	3	1	2	4	3	4	3	1	3	4	3	3	1	4	1	4	1	2	-
1	2	1	3	3	2	3	2	1	3	3	3	4	4	3	3	4	4	1	1	1	1	3	4	-
2	2	3	3	3	2	3	2	2	4	2	2	3	3	3	3	3	3	2	1	1	1	2	4	-
2	3	1	1	3	3	3	3	3	3	3	3	2	1	3	3	3	3	3	4	1	4	1	3	-
3	2	4	3	5	4	2	3	4	4	4	4	4	4	4	4	4	3	1	1	1	1	4	4	-
3	- 3	3	3	3	4	3	3	4	3	4	4	3	3	3	.3	3	3	2	2	3	2	3	3	
3	3	4	2	3	4	2	3	3	4	4	4	4	4	4	3	4	4	2	2	2	2	2	1	***
4	4	3	3	3	4	3	3	4	3	3	4	3	4	4	3	3	3	2	2	2	2	3	3	-
2	2	2	2	2	3	2	2	2	3	3	3	3	4	4	3	4	3	3	2	2	2	2	1	-
2	2	_	3	3	3	4	2	2	3	4	4	4	3	4	4	3	3	2	2	2	1	2	3	-
4	3	3	1	2	2	2	2	3	3	4	4	4	4	4	4	4	4	2	2	2	4	2	4	-
4	3	3	2	2	4	1	2	2	4	3	_ 3	3	4	3	3	3	2	2	2	1	4	1	3	
3	2	3	1	2	2	1	1	2	4	3	4	4	4	3	3	3	2	3	2	1	4	1	4	010
4	3	2	2	4	2	2	3	3	3	3	3	3	4	3	3	3	3	3	2	2	3	2	1	7-
2	2	3	2	4	3	3	3	3	3	4	4	3	4	4	4	3	4	2	2	1	1	1	1	
3	4	3	2	2	4	4	4	3	3	4	4	4	3	3	4	3	3	2	2	2	3	4	4	
2	3	3	1	4	3	2	3	3	4	3	3	4	2	3	3	3	2	2	2	2	4	2	4	-
4	3	4	3	3	4	2	3	3	3	3	3	3	2	3	3	4	4	1	1	1	1	1	2	11
2	4	2	2	4	3	2	3	4	3	3	4	4	3	4	4	3	3	2	1	1	4	1	3	Į.
4	4	3	3	3	3	3	3	2	4	2	3	3	2	3	3	3	3	3	3	4	3	4	3	iii.
3	3	3	2	3	3	2	2	3	4	4	3	3	3	3	3	4	4	6	1/2	2	2	3	4	ii.
3	4	3	3	3	2	3	4	3	4	3	3.	4	3	4	3	4	3	A	2	3	4	3		ii.
																		11,	1	3	4	3	4	

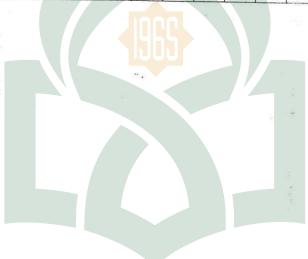
TIM VALIDASI PROGRAM STUDI MATEMATIKA

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

3	3	2	3	4	3	2	3	4	3	3	3	2	3	4	3	2	3	2	3	2	3	4	4
3	3	3	3	3	3	3	3	3	1	. 2	4	2	2	2	2	3	1	3	3	3	3	2	2
3	4	3	2	4	3	3	3	3	2	3	3	4	3	4	3	3	4	-3	2	2	4	2	3
4	3	3	3	3	2	2	4	3	3	3	3	3	3	3	3	3	3	2	2	2	4	2	2
3	3	3	2	3	3	3	3	3	2	3	2	3	3	3	3	3	3	2	2	2	3	3	3
3	3	3	2	3	2	4	3	3	3	3	3	3.	3	3	3	4	3	4	2	2	2	1	4
2	3	3	2	3	2	1	2	4	4	2	3	3	4	4	4	4	4	1	3	1	4	1	1
3	3	3	2	3	3	2	2	4	3	3	2	3	3	3	3	3	3	2	2	3	4	2	1
3	3	2	1	3	3	2	3	3	3	3	3	2	2	3	2	2	2	3	2	2	3	1	2
3	3	3	2	3	1	2	3	3	2	1	3	3	2	3	3	3	3	2	2	2	3	2	2
3	4	2	2	4	3	1	2	1	4	4	4	3	2	3	3	3	3	2	2	2	3	2	3
3	4	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2	3	3	1	2
3	4	3	1	3	1	2	3	2	2.	3	3	3	4	4	4	4	4	2	2	2	3	2	4
4	3	3	1	3	3	3	3	3	3	2	3	3	3	3	3	3	3	1	1	1	1	2	2
4	3	3	3	3	2	3	3	3	2	2	2	3	3	3	3	3	3	1	3	1	4	3	3
4	3	3	1	3	2	3	3	4	2	3	4	4	4	4	4	4	4	2	1	1	2	3	1
2	2	2	2	3	2	2	4	2	3	3	3	3	4	4	4	4	4	2	3	2	2	2	3
3	2	2	1	3	2	2	3	3	3	3	3	3	3	4	4	3	3	2	2	1	2	3	2
3	2	2	1	3	2	1	1	3	3	3	3	3	4	3	3	3	3	1	1	1	1	1	3
4	3	2	2	4	4	3	4	4	3	3	3	3	4	4	4	4	3	1	2	4	1	1	3
2	3	3	2	3	2	1	2	4	4	2	3	S3	S 4 /	4	4	4	4	1	2	2	2	1	2
4	3	3	2	3	2	2	2	3	3	3	3	3	3	3	3	3	3	2	2	2	2	2	1
3	- 3	3	1	3	3	3	3	3	3	4	4	4	4	4	4	4	1	2	2	1	2	2	2
4	3	2	1	4	2	2	3	3	2	4	4	3	4	4	3	3	4	1	1	2	3	3	2
2	2	2	2	3	3	2	3	3	4	3	4	4	3	3	3	3	4	2	3	2	3	1	4
3	3	2	1	4	2	3	4	4	3	4	4	A 4	4	3	3	4	5 4	1	1	1	3	2	4
4	4	4	3	4	3	3	4	3	3	3	3	2	3	3	4	3	4	1	1	1	1	1	1
3	3	3	1	3	2	4	4	1	2	4	4	4	4	4	4	4	4	3	3	2	3	3	3
3	3	2	2	3	3	3	4	3	4	3	3	4	4	3	3	2	2	2	3	4	3	1	
3	3	3	2	3	4	3	3	3	3	4	4	4	3	4	4	4	4	1	2	2			1
2	3	3	2	3	2	4	3	4	3	3	3	3	4	4	3	2	1	1	2		1	1	3
4	3	3	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	14	4	1
4	4	3	2	4	2	4	4	4	4	4	4	4	3	4	4	3	2	2		2	1	1	1
3	3	1	1	2	1	3	1	4	4	3	4	4	1	4	4	3	3		1		4	3	3
2	2	2	2	2	3	2	2	2	3	3	3	1	4	4	3	3		3	1	1	1	1	1
3	2	2	1	2	4	2	2	3	4	3	3	3	3	4	4	4	2	(3)	/ 2	2	2	2	1
										-	1	3	3	4	4	4	14	(3/	2	1	4	1	2


TIM VALIDASI PROGRAM STUDI MATEMATIKA

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

2	2	2	2	2	3	2	2	3	3	4	4	3	3	4	4	4	3	2	2	2	4	2	4
3	3	4	2	2	3	3	3	2	3 .	, 3	4	3	3	4	3	3	3	2	2	2	3	2	3
3	2	3	2	3	1	2	2	3	4	3	3	4	4	3	3	3	2	-2	1	2	2	2	1
3	2	2	2	2	3	3	2	3	2	3	3	3	2	3	3	3	3	2	2	7	2	2	1
3	2	2	3	3	3	2	2	2	2	3	3	3	3	3	2	3	3	2	1	1	1	2	4
3	2	3	2	3	4	3	3	2	3	3	3	3	4	3	2	3	2	2	2	- 1	f -	3	- 2

UNIVERSITAS ISLAM NEGERI

ALAUDDIN M A K A S S A B

												105									Covariance	Anti-image		
X23	X22	X21	X20	X19	X18	X17	X16	X15	X14	X13	X12	X11	X10	X9	X8	X7	X6	X5	×4	X	X	×		
047	.080	.040	015	003	068	.058	.001	.071	018	.031	014	.015	014	095	.006	.029	070	.016	.080	106	220	.645	×1	1
.041	078	163	.071	024	033	020	.026	087	.167	010	025	.000	.012	058	081	.014	.089	068	035	103	.480	220	X	1
.104	066	064	.067	.051	.090	103	035	.101	058	074	.011	.034	037	.100	097	.056	096	.036	115	.589	- 103	106	ХЗ	1
.041 104 178 048	.140	081	076	022	038	012	.034	.048	016	.031	.004	.092	042	019	.045	028	131	105	.550	115	035	.080	×	1
048	.073	.080	093	.114	038	.006	001	.029	.055	055	027	064	055	131	184	.087	.064	.560	105	.036	068	.016	X5	1
.126	.015	024	031	.063	.002	024	.064	065	.059	.136	031	-,160	103	048	106	012	.660	.064	131	096	.089	070	X6	1
.126 095 005 002	.133	032	050	034	.099	.030	083	012	.145	106	.024	042	.152	079	205	.509	012	.087	028	.056	.014	.029	×7	1
005	052	061	016	051	064	.046	011	007	138	.011	.026	.025	.045	.018	.454	205	106	184	.045	097	081	.006	X8	1
002	077	074	.135	.018	034	.014	026	039	099	.049	078	.092	109	.686	.018	079	048	- 131	019	.100	058	095	X9	1
.103	.065	.015	115	.009	.041	.083	043	083	.046	192	.076	048	.617	109	.045	.152	103	055	042	037	.012	014	X10	Anti
.103110	049	051	.111	050	029	009	047	.019	077	005	198	.376	048	.092	.025	042	160	064	.092	.034	.000	.015	×11	Anti-image Matrices
.022	.042	.058	076	-,041	.052	-,007	035	053	.073	125	.431	198	.076	-,078	.026	.024	031	027	.004	.011	025	014	X12	Matrice
011	082	070	.088	.015	025	089	022	.063	078	.448	125	005	192	.049	.011	106	.136	055	.031	074	010	.031	X13	S
025	.054	084	.086	033	.018	040	.037	163	.503	078	.073	077	.046	099	138	.145	.059	.055	016	058	.167	018	X14	
079	052	.034	-,001	016	040	021	148	.385	163	.063	053	.019	083	039	007	012	065	.029	.048	.101	087	.071	X15	
.049	030	.024	033	.130	028	123	.321	148	.037	022	035	047	043	026	011	083	.064	001	.034	035	.026	.001	X16	
.039	.112	021	054	098	165	.371	123	021	040	089	007	009	.083	.014	.046	.030	024	.006	012	103	020	.058	X17	F):
001	.097	.130	071	.029	.518	165	028	040	.018	025	.052	029	.041	034	064	.099	.002	038	038	.090	033	068	X18	
.034	086	052	116	.686	.029	098	.130	016	033	.015	041	050	.009	.018	051	034	.063	.114	022	.051	024	003	X19	
.026	220	172	.462	116	071	054	033	001	.086	.088	076	.111	115	.135	016	050	031	093	076	.067	.071	015	X20	
043	.061	.575	172	052	.130	021	.024	.034	084	070	.058	051	.015	074	061	032	024	.080	081	.064	.163	.040	X21	
063	.524	.061	220	086	.097	.112	030	052	.054	082	.042	049	.065	077	052	.133	.015	.073	.140	066	078	.080	X22	
.633	063	043	.026	.034	001	.039	.049	079	025	011	.022	110	.103	002	005	095	.126	048	.178	104			X23	
129	121	.048	.074	056	055	081	¢.033	.066	012	081	.052	014	133	.051	038	055	077	.034	039	.140	.031		X24	

- 00	-	9	9	7	m	ო	7		4	2	0	7 t-	X I		~	· ·	~	_		•	10			
708		5 .053	1 .216	1062	.053	5113	3092	067	470.	5202	970-	.094	144	020	127	690.	158	090	080	_	.075	199	192	.514ª
- 129	-	.075	171	301	081	.195	168	010	002	.165	226	.043	021	-,044	160	.108	.081	002	.052	.048	071	109	.590	192
121	-	156	119	.261	.135	.026	.257	106	128	114	-111	.088	169	.106	116	072	.254	.187	143	447	.111	.389ª	109	199
.048	.065	311	.110	143	140	038	060	118	118	.025	-,111	.118	139	157	.073	990.	045	.239	083	333	.586	£	071	.075
074	028	.151	.129	150	182	056	103	034	.241	215	.266	170	192	.179	002	085	131	146	205	.417ª	333	447	.048	.129
056	005	041	.081	037	.183	.094	058	092	.026	.014	099	076	.027	056	030	.276	195	.048	.579ª	205	083	143	.052	080
055	118	066	.163	071	071	.003	.192	132	057	.073	990	11.	053	.036	088	068	376	.703ª	.048	146	.239	.187	002	060
081	119	047	220	027	410.	049	890.	.112	.028	174	023	018	218	094	-,055	356	.722ª	376	-,195	-131	045	.254	.081	158
.033	.002	990.	080	.080	003	.138	204	029	056	960	137	095	059	160	421	.780ª	356	- 890	- 276	085	- 056	072	.108	690
990.	.143	-202	.212	104	.062	129	026	017	- 770	170	.049	130	.152	370	.722ª	421	055	- 088	030	002	.073	116	160	.127
012	032	.340	106	030	104	.102	-287	288	168	- 082	176	.157	165	.522ª -	370	160.	094	.036	056	.179 -	.157	.106	044	020
180.	- 750.	022	144	790	110	249	222	.025	- 680	366	.012	285	.7008	165	.152	059	218	053	720.	.192	139	169	021	144(
.052	-,027	055	.022	600	055	058	.051	.058	143	.148	492	.738	285	.157	130	095	018	.111). 970	170	.118	880.	.043	- 1
014	080.		.072	203	139	.321	. 760	.061	181	100	.e98ª	7. 492	012	176	640	1370	023	066	0	2661	111	111	0. 922	026
133	022	021	062	073	093	162	271(0.085	168	.481ª	100	.1484	366	280.			.1740	0 670.	0 410	- 25	.025	114	.1652	2020
150	143(101	.1580	-	.2120		133	.031	119	_	-		680		77170	960'- 99			157	215	Tel	1000		,
			112	39031		071	TV	-54		168	181.	143		8168	7077	9056	2 .028	2057	2 .026	4 .241	8118	6128	0002	7 .074
55038	010.	174	188	3 .089	3365	194)ª426	6 .660	3 .031	1 .085	7 .061	1 .058	2 .025	7288	9017	4029	3 .112	132	3092	3034	118	106	3010	067
7055	7 .050	8 .029	4 .102	7053	.163	a020	0 ,520	4426	133	277	097	3 .051	9222	2 .287	026	3204	990.	192	058	103	090"-	.257	168	092
4077	7107	.158	3154	9217	.104	409ª	3020	194	071	162	321	058	.249	.102	129	.138	049	.003	.094	056	038	.026	.195	113
9 .034	1 .027	130	.063	189	,669ª	.104	.163	365	212	093	139	055	110	104	.062	003	.014	071	.183	182	.140	.135	081	.053
039	.134	067	202	.592ª	189	217	053	680.	031	073	.203	600.	.062	030	401.	.080	027	071	037	150	143	.261	301	062
.140	172	194	.507	202	.063	154	.102	188	.158	062	.072	.022	-,144	106	212	080	220	.163	.081	.129	.110	119	171	.216
.031	396	.591	194	067	130	.158	.029	174	101	.021	.001	055	022	.340	202	990.	047	066	041	.151	311	156	.075	.053
.021	.602ª	396	172	.134	.027	107	.050	.010	143	022	.030	027	750.	032	.143	.002	.119	118	005	028	990.	.138	074	.031
X24	×	X2	×3	× 4	X5	9X	×	X8	6X	X10	X11	X12	X13	X14	X15	X16	X17	X18	X19	X20	X21	X22	X23	X24
	Anti-image	Correlation		25)	8																			

a. Measures of Sampling Adequacy(MSA)

Lampiran 3

	X24	.042	.014	.131	007	.054	077	027	053	920	125	026	064	.107	000	750	.027	.061	035	081	030	990	151	737
	X23	_	.033	115	175	.041	.129	086	012	011	.114	119	.028	022	019	087	.046	290	.011	.025	000	.037	049	.151
	X21	.032	160	.074	105	. 670.	026	052	056	- 290	200	047	.055	063	093	.042	.028	036	.125	044	185	582	037	990
	X20	.023	.049	.050	023	079	031	800	- 047	.131	-111	- 411	073	.068	.138	029	057	- 600	039	-,193	773.	185	0000	.030
	X19	010.	038	.042	100	.131	. 790.	013	062	900	050	080	036	.002	025	025	.128	087	.047	.700	193	044	.025	081
	X18	088	020	107	071	055	001	.082	- 057	021	.031	021	.046	011	600.	031	023	206	.537	.047	039	.125	.011	035
	X17	.045	+004	- 960	048	010	029	.001	- 062	.033	.075	.002	017	079	056	010	-,125	396	206	. 780	- 600	036	. 057	061
	X16	900	.022	039	045		- 990	081	014	031	040	051	034	028	040	154	.323 -	125	023	.128	- 057	820	. 046	027 -
	X15	.082	860	. 760.	790.	037	-064	.002	013	048	- 078	- 410	050	- 750.	161	390	-,154	010	031	025	029	.042	087	.057
	X14	027	.182	052	033	.049	.058	.142	135	093	.040	073	- 070	073	- 609	161	.040	056	600:	025	.138	093	019	.000
	X13	.046	023	088	.059	046	.142	094	.003	.039	190	013	123	.462	073	750.	028	- 620	011	- 200	890.	063	022	107
çeş	X12	021	019	.017	007	034	032	410.	030	074	.073	198	.434	123	.070	050	034	017	- 046	036	073	- 950.	- 820:	- 690
Anti-image Matrices	X11	.023	007	.028	.115	059	161	032	.021	780.	043	.381	198	013	073	.014	051	.002	021	.090	. 411.	047	119	026
ti-imag	X10	025	.022	030	065	066	107	.147	.053	103	.625	043	.073	190	.040	078	040	320.	.031	.020	-11	- 200.	411.	125
An	6X	087	072	460.	.001	125	046	065	.010	769.	103	.087	074	.039	093	048	031	.033	021	900.	.131	067	011	- 980.
	8X	.014	-,092	-,106	.063	.182	.106	207	459	010.	.053	.021	.030	.003	.135	.013	410.	.062	. 057	-,062	047	056	.012	053
	× ×	600	.038	620.	073	.075	017	.545	207	065	147	032	410.	094	.142	.002	.081	.001	.082	013	800.	052	980	027
1	9X	074	.093	095	145	.063	.661	017	106	046	107	161	032	.142	.058	064	990.	029	001	.067	031	026	.129	- 777
	X5	.005	059	.047	136	.571	.063	.075	182	125	990	059	034	046	.049	.037	.003	010	055	131	079	.073	041	.054
İ	×	.064	015	106	169.	136	145	073	.063	.001	065	.115	007	690.	033	790.	.045	048	071	.001	023	105	175	007
Ì	×3	099	117	765.	106	.047	095	620.	106	.094	030	.028	.017	088	052	760.	039	960'-	.107	.042	.050	.074	115	.131
	X	217	.492	-117	015	059	.093	.038	092	072	.022	007	019	023	.182	098	.022	004	020	038	.049	160	.033	.014
	×	.658	217	660'-	.064	.005	074	600.	.014	087	025	.023	021	.046	027	.082	900	.045	088	010.	.023	.032	039	.042
	1	×	X	×	X 4	X5	9X	×	8X	6X	X10	X11	X12	X13	X14	X15	X16	X17	X18	X19	X20	X21	X23	X24
		Anti-image	Covariance					: <u>::::::::</u>																

X1 .621ª	1ª382	2158	3 .102	.008	112	.016	.025	128	038	.046	039	.083	047	.162	.013	.088	148	.015	.037	.051	060	.061
382	32 .594ª	217	028	112	.164	.073	.194	123	.040	017	042	049	.363	224	.055	008	038	065	.092	299	.059	.023
158	.217	7 .515	178	.080	152	.138	203	.145	049	.060	.033	168	095	.201	060	197	.190	.065	.085	.125	186	.198
.102	028	8178	.565	234	232	129	.122	.002	107	.242	015	.112	060	.140	.103	100	126	.00	039	179	284	011
.008	112	2 .080	234	.681	.102	.134	-,355	198	110	126	068	089	.091	620.	700	022	099	.207	137	.127	067	.083
112	2 .164	4152	232	.102	,399ª	028	.193	068	166	320	060	.258	.100	-,127	140	057	002	860.	050	041	.199	110
.016	6 .073	3 .138	129	134	028	.583	415	-,105	.251	071	.030	187	.271	.004	193	.003	.152	022	410.	092	145	043
.025	5194	4203	.122	-,355	193	415	.656ª	.018	860.	.049	.068	700.	280	030	037	.145	115	109	092	108	022	090
128	8123	3 .145	.002	198	068	-105	.018	.661ª	156	.169	134	690:	157	093	990	.063	034	800.	.207	106	017	.050
038	8 .040	049	107	110	166	.251	860.	156	.508ª	088	.140	354	.071	159	089	.150	.053	.031	184	.012	.180	184
.046	6017	090.	.242	126	320	071	.049	.169	088	.704ª	487	031	167	780.	146	.005	046	117	.243	100	241	050
039	9042	2 .033	015	068	060	.030	890.	134	.140	487	.751ª	275	.149	121	090	042	960.	064	146	.109	.053	114
.083	3049	9168	.112	089	.258	187	700.	690.	-,354	031	275	.726ª	150	.135	073	184	022	.003	.132	122	040	184
X14047	7 .363	3095	060	.091	.100	.271	280	157	120	167	.149	150	.515ª	362	660	125	.017	042	.254	171	033	.001
X15 .162	2224	1 .201	.140	620.	127	.004	030	093	-,159	.037	121	.135	362	.719ª	433	026	068	048	061	780.	175	107
.013	3 .055	090	.103	700.	.140	-,193	037	990	089	146	060'-	073	660.	433	.777	-,350	055	.269	132	.064	101.	.055
.088	800	3197	100	022	057	.003	.145	.063	.150	.005	042	-,184	-,125	-,026	350	.738ª	446	165	020	920	.113	113
148	8038	190	126	099	002	.152	.115	034	.053	046	960	022	.017	068	055	-,446	.696ª	770.	071	.223	.019	055
X19 .015	290 9	990.	.001	.207	860.	022	.109	800.	.031	117	064	.003	042	048	269	-,165	720.	.503ª	304	069	.037	-,112
.037	7 .092	30.085	039	137	050	.014	092	.207	184	.243	-,146	.132	.254	061	132	020	071	304	.461	319	001	.046
.051	1299	125	179	.127	041	092	.108	-,106	.012	100	109	122	171	780.	.064	920	.223	069	319	.595ª	060	100
060	0 059	186	284	067	199	145	022	017	.180	241	.053	040	033	-,175	101	.113	910.	.037	001	060	.588ª	220
.061	1 .023	3 .198	011	.083	110	043	.090	.050	184	050	114	184	.00	107	.055	113	055	112	.046	100	220	.553ª

a. Measures of Sampling Adequacy(MSA)

		ĺ							74	Anti-image Matrices	ge Matr	ces											
		×	X2	X3	X4	X5	×	8X	6X	X10	X11	X12	X13	X14	X15	X16	X17	X18	X19	X20	X21	X23	X24
Anti-image	×	999.	215	114	.051	.012	.008	.002	093	038	900	025	790	021	720.	.013	.042	089	.018	.020	.029	026	.034
Covariance	8	215	.505	109	900.	071	.041	082	068	.039	.018	-,015	048	.180	093	.013	100.	020	049	.055	161	.016	.025
	×3	114	109	.611	137	.058	.078	129	.089	048	900.	.013	074	046	100.	031	103	.110	.053	.047	.072	103	.124
	× 4	.051	900.	137	.624	131	081	.044	600	960'-	.094	015	.102	021	.057	.064	058	075	910.	031	117	161	.026
	X5	.012	071	.058	131	773.	.077	180	122	058	.049	031	064	.044	.045	-,003	800:-	055	.127	077	720.	056	.062
	×	800.	.041	870.	081	720.	.545	218	990'-	.148	041	.014	097	.145	000	081	.001	.082	012	700.	052	086	.030
	8X	.002	082	129	.044	180	218	477	.003	.038	900.	.026	.029	-132	024	004	090.	060	053	054	062	010	.068
	6X	093	068	680.	009	122	990	.003	.700	114	.085	920	.053	090	-,054	027	.031	021	.010	.130	070	002	.031
	X10	038	.039	048	960'-	058	.148	.038	411	.643	079	070.	-,184	.051	093	031	.072	.031	.032	119	.003	44	-143
	X11	900	.018	900	.094	049	041	006	.085	079	424	230	.026	067	002	040	900-	024	050	.119	059	102	.051
	X12	025	015	.013	-,015	031	410.	.026	076	070.	230	.435	125	.074	054	031	-019	.047	033	075	.054	920.	.062
	X13	790.	048	074	.102	064	097	.029	.053	184	.026	125	494	092	- 770.	046	078	011	014	.080	062	055	098
	X 4	021	.180	046	021	.044	.145	132	090	.051	×.067	.074	092	415.	160	- 980.	-,054	600	031	.142	092	031	700.
	X15	720.	093	.091	790.	.045	000	024	054	093	002	054	. 770.	160	.397	153	014	032	019	032	.040	620	.051
	X16	.013	.013	031	.064	003	081	004	027	031	040	031	046	980.	153	.330	125	023	.125	055	.031	.035	960.
	X17	.042	100.	103	058	008	.001	090.	.031	.072	900.	019	078	054	014	125	397	206	085	011	038	990.	-,065
	X18	089	020	.110	075	055	.082	060	021	.031	024	.047	011	600.	032	023	.206	.537	.048	040	.125	.012	035
	X19	.018	049	.053	.016	.127	012	053	.010	.032	050	033	014	031	019	.125	085	.048	. 707.	193	042	.012	.074
9	X20	.020	.055	.047	031	077	200.	054	.130	119	.119	075	.080	.142	032	055	011	040	193	675	187	900.	.027
	X21	.029	-,161	.072	117	720.	052	062	070	.003	059	.054	062	092	.040	.031	038	.125	045	187	.583	.033	063
	X23	026	.016	103	161	056	086	.010	002	44	-,102	980.	055	031	079	.035	990	.012	.012	900.	033	- 299.	143
	X24	.034	.025	124	026	.062	030	068	.031	143	051	.062	098	700.	.051	.036	065	035	074	.027	.063	143	*746

.049	.041	184	038	.095	047	-,114	.043	206	090	.108	162	.012	460.	.072	120	056	102	.041	960.	-200	16
039	.028	161	250	090	143	.017	003	.221	191	990.	096	054	154	.075	.128	.019	.018	600.	053	942	18
.047	297	.120	194	.132	093	118	109	900.	119	.107	116	168	.083	170.	078	.224	-,065	322	.589ª	053	960
.032	101	870.	052	133	.012	103	204	195	.240	150	.150	.261	067	126	023	071	301	,453ª	322	600.	140.
.026	083	.081	.025	199	019	092	.015	.048	091	059	023	052	036	.259	161	720.	.525ª	301	065	.018	102
149	039	191	130	-089	.152	118	035	.054	049	960.	022	.017	069	055	447	.693ª	720.	071	.224	910.	056
.082	.001	208	117	016	100.	.137	090.	.143	.014	.045	-175	120	034	.346	.738ª	447	.161	023	078	.128	120
.029	.033	070	.140	008	191	010	057	067	-,108	082	-,114	780.	423	.792ª	.346	055	.259	126	.071	.075	.072
.150	208	.185	.115	.093	000	055	103	184	004	130	175	354	.729ª	423	034	069	036	067	.083	-,154	760.
036	.353	081	038	.081	.275	267	151	680.	143	.156	-,182	.524	354	780.	120	.017	052	.261	168	054	.012
.116	960'-	135	.183	120	186	690.	060	-,326	.056	269	.732ª	-,182	175	114	-,175	022	023	.150	116	960	162
046	033	.024	029	062	.028	750.	138	.132	536	.730ª	269	.156	130	082	045	960.	059	150	.107	990.	.108
.011	.038	.012	.182	660'-	-,085	013	.156	-,152	,732ª	536	.056	-,143	004	108	÷.014	.049	091	.240	-,119	191	090
058	690.	076	152	095	.250	690	170	.480	152	.132	326	680.	184	067	.143	.054	.048	195	900.	.221	206
137	113	.137	014	192	107	.005	.662ª	170	.156	-,138	060.	.151	103	057	090	035	.015	204	109	003	.043
.004	168	239	.081	344	428	.664ª	300.	690.	013	750.	.059	267	055	010	.137	118	092	103	118	- 210.	114
.013	820.	.136	140	.138	.573ª	428	107	.250	085	.028	186	275	000	191	.001	.152	019	.012	093	143	047
.020	131	760.	218	.689ª	.138	344	192	095	660	062	120	180.	.093	008	016	-060	199	133	.132	- 060	- 960
620.	.010	222	.579ª	218	140	.081	014	152	- 182	029	.183	038		.140	-117	130	.025	052	194	250	038
179	197	.518	222	760.	.136	239	.137	076	.012	.024	135	081	.185	.070	208	191.	.081	870.	.120		.184(
				170.0	72	- 00		(2.03												161	_
-,371	.617ª	197	010.	131	870.	168	113	690'	.038	033	960'-	.353	208	.033	.000	039	083	.101	297	.028	.041
.632	371	179	.079	.020	.013	.004	137	058	.011	046	.116	036	.150	.029	.082	149	.026	.032	.047	039	.049
×	X	X3	X 4	X5	×	X8	6X	X10	X11	X12	X13	X14	X15	X16	X17	X18	X19	X20	X21	X23	X24
Anti-image	Correlation				8																

a. Measures of Sampling Adequacy(MSA)

								Þ		Anti-image matrices	ces										
	×	X2	X3	×	X5	X	X8	X9	X10	X11	X12	X13	X14	X15	X16	X17	X18	X19	X21	X23	-
Anti-image X1	.667	7220	116	6 .052	.015	.007	.004	102	035	5 .002	2023	.065	5028	.079	.016	.043	088	.027	.040	026	
Covariance X2	2220	.510	116	.009	065	.041	079	084	.053	3 .007	008	057	7 .181	091	.019	.002	017	035	162	.016	
X3	3116	116	.615	136	.065	.078	127	.083	040	0004	.019	083	3062	.095	028	103	.114	.076	.097	- 104	
×	.052	.009	136	6 .626	137	-,081	.042	002	107	7 .106	020	.109	9015	.056	.062	059	078	.007	142	161	
X5	.015	5065	.065	5137	.587	.080	193	112	078	036	043	055	5 ,069	.041	011	009	062	.113	.059	056	1962
X7	.007	.041	.078	8081	.080	.545	220	071	.155	5045	.015	100	.154	.001	082	.001	.083	010	056	086	030
X8	.004	079	127	7 .042	193	220	.482	.016	.028	.006	.020	.038	8129	028	009	.059	064	079	090	.010	067
X9	102	2084	.083	3002	112	071	.016	.731	095	.064	064	.037	7 (437	049	016	.035	013	.062	032	004	1000
X10	035	5 .053	040	0107	078	.155	.028	095	.668	8060	.058	178	8 0.090	104	044	.073	.024	008	041	.151	143
X11	.002	.007	004	.106	036	045	.006	.064	060	0 .450	233	.010	-,109	.005	031	004	016	012	025	-,109	060
X12	023	3008	.019	020	043	.015	.020	064	.058	8233	.445	120	5301	060	040	021	.043	065	.034	.037	
X13	.065	5057	083	3 .109	055	100	.038	.037	178	.010	120	.506	5 .123	.084	040	078	006	.015	041	057	
X14	028	.181	062	015	.069	.154	129	137	.090	109	.101	123	3 .552	164	.054	056	.020	.019	055	-,035	1000
X15	.079	9091	.095	.056	.041	.001	028	049	104	.005	060	.084	4 -164	.398	159	014	035	033	.033	079	
X16	.016	.019	028	.062	011	082	009	016	044	031	040	040	.054	159	.335	128	028	.119	.015	.036	- 1322
X17	.043	.002	103	3059	009	.001	.059	.035	.073	004	021	078	3056	014	128	.398	208	098	046	.066	065
X18	088	8017	.114	+078	062	.083	064	013	.024	016	.043	006	.020	035	-,028	208	.540	.038	.126	.012	034
X19	.027	7035	.076	.007	.113	-,010	079	.062	008	012	065	.015	.019	033	.119	098	.038	.778	127	.016	072
X21	.040	162	.097	142	.059	-,056		032	041	-			י סאא		.015	046		407	_	2	_
X23	026	.016	101				090	_		025	.034	041	_	.033	Man 197		.726	12/	.650	-,035	

_	_																				
																			Correlation	Anti-image	
X24	X23	X21	X19	X18	X17	X16	X15	X14	X13	X12	×11	X10	X9	X8	X7	X5	× ₄	X	న	¥	X24
.048	039	.060	.038	147	.083	.033	.152	046	.113	042	.004	053	146	.007	.012	.024	.081	182	377	.622ª	.034
.038	.027	280	-,055	032	.004	.046	203	.340	113	018	.014	.091	138	159	.077	119	.016	206	.624ª	377	.023
.182	162	.154	.110	.198	207	061	.192	106	148	.037	007	062	.124	233	.135	.109	219	.503ª	206	182	.123
036	250	223	.009	134	118	.135	.112	025	.193	038	.201	165	004	.076	139	227	.552ª	219	.016	.081	024
.101	090	.095	.168	110	019	025	.085	.121	102	084	070	125	170	363	.141	.694ª	227	.109	119	.024	.067
047	143	094	016	.153	.001	191	.001	.281	-,190	.030	090	.258	112	429	.564ª	.141	139	.135	.077	.012	030
111	.018	161	130	126	.135	024	063	250	.076	.043	.012	.050	.027	.657ª	429	363	.076	233	159	.007	067
.035	005	047	.082	021	.066	032	091	216	.061	-1111	.112	136	.710ª	.027	112	170	004	.124	138	146	.026
202	.227	062	012	.041	.141	094	202	.148	306	.105	110	.492ª	136	.050	.258	125	165	062	.091	053	143
- 103	199	046	020	033	009	080	.012	219	.021	521	.764ª	110	.112	.012	090	070	.201	007	.014	.004	060
11.55	.068	.063	110	.087	049	103	142	.205	252	.742ª	521	.105	-111	.043	.030	084	038	.037	018	042	.067
- 170	099	072	.023	011	174	096	.187	232	.741ª	252	.021	306	.061	.076	190	102	.193	148	113	.113	104
3	058	091	.029	.037	,119	.125	.349	.489ª	232	.205	219	.148	.216	250	.281	.121	025	106	.340	046	.001
098	153	.064	059	074	036	436	.723ª	349	.187	142	.012	202	091	063	.001	.085	.112	.192	203	.152	.053
078	.077	.032	.234	065	351	.794ª	436	.125	096	103	080	094	032	024	191	025	.135	061	.046	.033	.039
110	.128	091	176	450	.733ª	351	036	119	174	049	009	.141	.066	.135	.001	019	118	207	.004	.083	065
- 053	.020	.212	.059	.695ª	450	065	074	.037	011	.087	033	.041	021	126	.153	110	134	.198	032	147	034
008	.022	179	.502°	.059	176	.234	059	.029	.023	110	020	012	.082	130	016	.168	.009	.110	055	.038	072
115	053	.621ª	179	.212	091	.032	.064	091	072	.063	046	062	047	161	094	.095	9223	.154	5280	.060	2 .080
200	.634ª	053	.022	.020	.128	.077	-,153	-,058	099	.068	199	.227	-,005	.018	143	090	250	162	.027	0039	144
ת ה ה	204	.115	095	053	119	.078	.098	.001	170	.115	103	202	.035	-111	047	.101	036	.182	.038	.048	4 .747

									Anti-image Matrices	ge Mat	rices										
		×	X2	ХЗ	X4	X5	X7	X8	X9	X10	×11	X12	X13	X15	X16	X17	X18	X19	X21	X23	X24
Anti-image	¥	.668	239	121	.052	.019	.017	003	115	031	004	019	.063	.080	.019	.041	087	.028	.037	028	.034
Covariance	×	239	.577	109	.015	101	012	044	047	.027	.051	049	021	049	.002	.023	026	046	164	.031	.026
	X	121	109	.622	139	.075	.105	153	.072	031	017	.032	103	.088	022	112	.118	.079	.093	109	.125
	X	.052	.015	139	.626	138	084	.041	006	107	.109	018	.111	.059	.064	061	077	.007	145	163	024
	X5	.019	101	.075	138	.596	.066	192	101	093	024	059	043	.071	018	002	066	.113	.067	053	.068
	X7	.017	-,012	.105	084	.066	.592	213	037	.145	016	015	075	.057	106	.018	.084	017	045	083	033
	X8	003	044	153	.041	192	213	.515	018	.054	022	.048	.010	080	.003	.050	064	080	<u>.</u>	.002	071
	X9	115	047	.072	006	101	037	018	.767	078	.041	042	.008	107	003	.023	008	.070	048	013	.027
	X10	031	.027	031	107	093	.145	.054	078	.683	046	.044	171	090	055	.085	.022	012	033	.161	146
	X11	004	.051	017	.109	024	016	022	.041	046	.473	234	016	033	022	016	013	009	038	122	063
	X12	019	049	.032	018	059	015	.048	042	.044	234	.465	107	035	053	011	.041	071	.046	.046	.069
	X13	.063	021	103	.111	043	075	.010	.008	171	016	107	.535	.057	030	097	001	.020	057	069	110
	X15	.080	049	.088	.059	.071	.057	080	107	090	033	035	.057	.454	166	035	033	031	.019	102	.061
	X16	.019	.002	022	.064	018	106	.003	003	055	022	053	030	166	.340	126	030	.120	.021	.041	.039
	X17	.041	.023	112	061	002	.018	.050	.023	.085	016	011	097	035	126	.403	209	097	053	.063	066
	X18	087	026	.118	077	066	.084	064	008	.022	013	.041	001	033	030	209	.540	.038	.129	.013	034
	X19	.028	046	.079	.007	.113	017	080	.070	012	009	071	.020	031	.120	097	.038	.778	127	.017	072
2	X21	.037	164	.093	145	.067	045	111	048	033	038	.046	057	.019	.021	053	.129	127	.656	039	.081
	X23	028	.031	109	163	053	083	.002	013	.161	122	.046	069	-102	.041	.063	.013	.017	039	.669	144
	X24	.034	.026	.125	024	.068	033	071	.027	146	063	.069	110	.061	.039	066	034	072	.081	-144	.747
Anti-image	×	.612ª	384	188	.080	.030	.026	004	160	046	006	033	.105	.146	.039	.078	146	.039	.056	042	.048
Correlation	X2	384	.709ª	182	.026	172	020	081	070	.044	.097	.097095037	_	095	.004	.047	.047047069	069	266	.050	.039

	- 8	9	N	0	4	(0)	ю	(0	m	-	10			~	10			-	
	.183	036	.102	050	-,114	.036	205	106	.118	174	.105	920.	120	053	095	.116	204	.536ª	
	-:170	252	083	132	400.	018	.239	218	.082	-,116	186	.085	.122	.022	.023	058	.602ª	204	
	.146	227	.108	071	191	068	049	068	.083	096	.035	.044	103	.217	-,177	.617ª	058	.116	
	411.	.010	.165	025	127	060.	016	014	119	.031	052	232	174	.058	.500ª	177	.023	095	
	.203	133	116	.149	121	013	.035	026	.081	003	066	070	449	.691ª	.058	.217	.022	053	
	223	122	005	.036	.110	.041	.162	036	026	208	083	342	.721ª	449	174	103	.122	120	
	048	.140	041	237	.008	006	115	055	132	070	422	.794ª	342	070	.232	.044	.085	.078	
	.166	.110	.137	111	166	182	162	070	077	.117	.754ª	422	083	066	052	.035	186	.105	
	179	192	076	134	.019	.012	283	032	215	.786	.117	070	208	003	.031	960:-	116	174	
	090:	033	5112	029	660.	0.070	920.	498	.777	215	077	132	026	.081	-,119	.083	.082	.118	
	7031	3 .200	045	030	046	990.	080	.782ª	498	032	070	055	036	026	014	068	218	106	
	4047	163	145	5 .227	.091	107	.529ª	080	870.	283	162	115	.162	.035	016	049	.239	205	
	104	009	149	055	029	.784ª	107	.068	070	.012	182	900'-	.041	013	060	068	018	.036	
	270	.072	346	386	.679ª	029	.091	046	660.	.019	166	900.	.110	121	127	191	.004	114	F
	.173	138	.112	.634	386	055	.227	030	029	134	£	237	.036	.149	025	071	132	050	
	.123	225	.697ª	.112	346	149	145	045	112	076	.137	041	005	116	.165	.108	083	.102	
9	223	.549ª	225	138	.072	600	163	.200	033	.192	.110	.140	122	133	.010	227	252	036	
5	.487	223	.123	.173	270	104	047	031	090.	179	.166	048	223	.203	411.	.146	170	.183	(3)
	182	.026	172	020	081	070	944	760.	-,095	037	095	400.	.047	047	690'-	266	.050	660.	
1	188	080	.030	.026	004	160	046	900	033	.105	.146	.039	820.	146	.039	.056	042	.048	
-0	×33	× 4	X5	X	8X	6X	X10	X11	X12	X13	X15	X16	X17	X18	X19	X21	X23	X24	
																			SECTION SEE
																		I	

a. Measures of Sampling Adequacy(MSA)

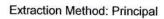
	Correlation	Anti-image							9 -							_				Covariance	Anti-image		
<u>¥</u>	š	×	X24	X23	X21	X19	X18	X17	X16	X15	X13	X12	X11	X10	X9	X8	X7	X5	¥	X	×		
.041	435	.571ª	.062	053	.058	.045	069	.021	.015	.104	.046	013	007	039	106	037	.040	.035	.028	276	.680	×1	
.003	.681ª	435	.052	.006	155	033	004	005	.001	031	037	045	.053	.019	042	091	.015	090	.002	.592	276	X2	
.529ª	.003	.041	.002	192	146	.022	070	070	.054	.070	.080	012	.100	112	.036	.047	107	144	.691	.002	.028	×	
223	151	.055	.055	039	.058	.106	086	.017	017	.062	035	063	024	089	110	-,193	.053	.606	144	090	.035	X5	
- 166	.026	.062	060	052	067	036	.064	.067	116	.032	078	022	025	.169	036	195	.605	.053	107	.015	.040	¥	
.075	156	060	045	049	098	065	034	,002	.006	054	002	.063	018	.040	018	.574	195	193	.047	091	037	X8	
.049	061	145	.015	013	060	.065	019	.024	.005	115	.031	046	.052	084	.778	018	036	110	.036	042	106	X9	1
162	.030	057	145	.157	028	006	.032	.078	053	083	178	.045	042	.690	084	.040	.169	089	112	.019	039	X10	Anti-
.176	.101	013	062	123	037	008	013	009	026	038	027	231	.467	042	.052	018	025	024	.100	.053	007	X11	Anti-image Matrices
- 021	086	023	.065	.054	.042	076	.036	-,006	051	041	105	.458	231	.045	046	.063	022	063	012	045	013	X12	atrices
.130	064	.075	097	084	046	.032	.016	-118	040	.069	.552	105	027	178	.031	002	078	035	.080	037	.046	X13	1
.124	058	.184	.046	084	.005	047	057	009	174	.468	.069	041	038	083	-:115	054	.032	.062	.070	031	.104	X15	
.112	.002	.031	.045	.045	.024	.123	029	137	.337	174	040	051	026	053	.005	.006	116	017	.054	.001	.015	X16	
- 126	009	.039	048	.032	038	090	212	.448	137	009	118	006	009	.078	.024	.002	.067	.017	070	005	.021	X17	
- 111	007	112	063	.043	.118	.023	.565	212	029	057	.016	.036	013	.032	019	034	.064	086	070	004	069	X18	
030	048	.062	093	.036	- 144	.789	.023	090	.123	047	.032	076	008	006	.065	065	036	.106	.022	033	.045	×19	
- 215	-246	.086	.066	022	.670	-144	.118	038	.024	.005	046	.042	037	028	060	098	067	.058	146	155	.058	X21	
- 276	.009	077	- 132	.703	022	.036	.043	.032	.045	-084	084	.054	123	.157	013	049	052	039	192	.006	053	X23	
002	.076	.085	.772	132	.066	093	063	048	.045	.046	097	.065	062	145	.015	045	060	.055	.002	.052	.062	X24	

	-	_													
.081	088	068	.019	199	103	.109	149	920.	.088	082	095	119	260.	179	599ª
059	080	078	018	.225	214	.095	134	147	.093	750.	.068	.048	032	.614	- 170
.091	106	158	083	041	067	920.	075	900	.050	070	.192	198	.657ª	032	092
.153	052	097	.083	009	014	127	040	077	.238	151	.034	.499ª	198	.048	- 119
147	.110	059	028	.051	026	.071	.028	-111	067	422	.738ª	.034	192	890.	095
.032	.129	.004	.040	.140	020	013	237	019	352	.751ª	422	151	070	750.	082
038	256	.014	.010	110	067	130	093	437	.785ª	352	067	.238	.050	.093	.088
.116	.061	103	191	147	081	089	.136	.771ª	437	019	111	077	800.	-,147	920.
061	135	003	.048	289	053	209	.801ª	.136	093	237	.028	.049	075	134	149
120	041	.123	.078	.081	.500	.771	.209	089	.130	013	1.70.	127	920.	.095	.109
045	048	034	980.	073	.786ª	500	053	081	067	020	026	014	067	214	-,103
138	.262	.064	115	.529ª	073	.081	289	147	110	.140	.051	600	041	.225	-199
	052	027	.775ª	115	.086	078	.048	.191	010	.040	028	.083	083	018	.019
328	-,330	.735ª	027	.064	034	.123	003	-,103	.014	400.	059	760'-	-,158	078	-,068
980.	.655ª	330	052	.262	048	041	-,135	.061	256	.129	.110	052	-106	080	088
717.	.088	328	161	138	045	120	061	.116	038	.032	147	.153	.091	059	.081
223	166	.075	0.49	162	.176	021	.130	.124	.112	126	111	.030	215	276	.002
151	.026	156	061	.030	.101	086	064	058	.002	009	007	048	246	600.	920.
.055	.062	060	145	057	013	023	.075	.184	.031	.039	112	.062	980.	077	.085
XS	X	8X	6X	X10	X17	X12	X13	X15	X16	X17	X18	X19	X21	X23	X24
			8.												
															- 1

a. Measures of Sampling Adequacy(MSA)

	Correlation	Anti-irnage										0				**************************************			Covariance	Anti-image		
X	X	×	X24	X23	X21	X18	X17	X16	X15	X13	X12	X11	X10	X9	X8	X 7	X5	*	X2	×		
.040	433	.565ª	.068	056	.069	071	.027	.008	.108	.044	008	007	039	111	034	.042	.030	.027	275	.682	X1	
.005	.678ª	433	.049	.008	167	003	009	.006	033	035	049	.053	.019	039	095	.014	088	.003	.593	275	X2	
.527ª	.005	.040	.004	194	148	070	069	.054	.072	.079	010	.101	111	.034	.050	106	151	.691	.003	.027	×4	1
230	146	.046	.070	045	.082	091	.030	037	.070	040	055	023	091	- 123	191	.059	.620	151	088	.030	X5	1
164	.023	.066	065	051	077	.065	.065	117	.031	077	025	026	.170	033	200	.606	.059	106	.014	.042	X7	1
.078	162	054	054	047	115	032	006	.018	058	.001	.058	019	.040	013	.580	200	. 191	.050	095	034	X8	1
.047	057	- 151	.023	016	050	021	.032	005	113	.029	041	.053	084	.783	013	033	123	.034	039	111	X9	Anti-II
161	.029	056	148	.157	030	.032	.079	055	084	178	.046	042	.690	084	.040	.170	091	-111	.019	039	X10	Anti-image Matrices
	.100	012	064	123	040	013	010	027	039	026	236	.467	042	.053	019	026	023	.101	.053	007	X11	latrices
.177017	093	015	.057	.058	.030	.039	015	042	047	104	.465	236	.046	041	.058	025	055	010	049	008	X12	1
.128	062	.072	095	086	042	.015	117	048	.072	.553	.104	026	178	.029	.001	077	040	.079	035	.044	X13	
.127	062	.190	.041	083	004	056	014	177	.471	.072	047	039	084	113	058	.031	.070	.072	-,033	.108	X15	
.108	.013	.017	.064	.042	.051	035	133	.357	177	048	042	027	055	005	.018	-117	037	.054	.006	.008	X16	Ì
123	017	.049	061	.037	058	215	.458	133	014	117	015	010	.079	.032	006	.065	.030	069	009	.027	X17	
112	005	114	061	.042	.128	.566	215	035	056	.015	.039	013	.032	021	032	.065	091	070	003	071	X18	
	260	.101	.052	016	.697	.128	058	.051	004	042	.030	040	030	050	115	077	.082	148	167	.069	X21	1
214 278	.012	-,080	130	.705	016	.042	.037	.042	083	086	.058	123	.157	016	047	051	045	194	.008	056	X23	
.006	.071	.093	.783	130	.052	061	061	.064	.041	095	.057	064	148	.023	054	065	.070	.004	.049	.068	X24	

	35	9	o	2	9	5	4	7	_	2		0	4	æ	1
-101	095	080	.029	202	106	.095	144	.067	.121	102	091	.070	174	.588	
068	078	073	022	.226	214	.102	137	143	.084	.065	990.	023	.615	174	
.125	118	181	068	043	071	.052	067	007	.102	103	.203	.626ª	023	070.	
154	.112	056	031	.051	026	920.	.026	109	078	-,422	.732ª	.203	990.	091	
.057	.123	011	.053	.140	022	033	233	031	329	.762ª	422	103	.065	102	
078	251	.039	010	111	065	104	108	432	.804ª	329	078	.102	.084	.121	
.129	.057	112	185	148	082	100	.141	.772ª	432	031	109	007	143	790.	
069	133	.002	.044	289	-,052	205	.804ª	.141	108	233	.026	067	137	144	
103	048	.112	068	.081	506	.782ª	205	100	104	033	920.	.052	.102	.095	
044	048	036	.087	074	.782ª	506	052	082	065	022	026	071	214	106	
-,139	.262	.064	114	.526	074	.081	289	148	-111	.140	.051	043	.226	202	
176	048	019	.778	-,114	780.	068	.044	185	010	.053	031	068	022	.029	
318	338	.733ª	019	.064	036	.112	.002	-112	.039	011	056	181	073	080	
760.	.649ª	-,338	048	.262	048	048	133	750.	251	.123	.112	118	078	095	
.711ª	760.	318	176	139	044	103	-,069	.129	078	750.	154	.125	-,068	.101	C
230	164	820.	.047	161	.177	017	.128	.127	.108	-,123	112	214	278	900.	
146	.023	162	057	.029	.100	093	062	062	.013	017	005	260	.012	.071	
.046	990.	054	151	056	012	015	.072	.190	.017	.049	114	101.	080	.093	
X5	XX	X8	6X	X10	X11	X12	X13	X15	X16	X17	X18	X21	X23	X24	(
								0.1							


a. Measures of Sampling Adequacy(MSA)

NEGERI

Ĉampiran : 9

Communalities

	Initial	Extraction
X1	1.000	.518
X2	1.000	.628
X4	1.000	.573
X5	1.000	.514
X7	1.000	.637
X8	1.000	.568
X9	1.000	.411
X10	1.000	.775
X11	1.000	.640
X12	1.000	.633
X13	1.000	.590
X15	1.000	.584
X16	1.000	.740
X17	1.000	.699
X18	1.000	.788
X21	1.000	.450
X23	1.000	.462
X24	1.000	.550

Component Analysis.

UNIVERSITAS ISLAM NEGERI

ALAUDDIN

B, VALDASI PROGRAM

- 1. INPUT PROGRAM
- 2. OUTPUT PROGRAM

LINIVERSITAS ISLAM NEGERI

ALAUDDIN M A K A S S A B

Fakultas Sains dan Teknologi Universitas islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

SURAT KETERANGAN VALIDASI PENILAIAN KELAYAKAN DAN SUSBTANSI PROGRAM

No: 028/Val/M/358_2014

Yang bertanda tangan dibawah ini Tim Valiadasi penilaian kelayakan dan susbtansi program mahasiswa Jurusan Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Alauddin Makassar menerangkan bahwa karya ilmiah mahasiswa:

Nama

Fifi Elpira

NIM

60600110019

Jurusan

: Matematika

Judul Karya ilmiah

"Penerapan Analisis Faktor Untuk Menentukan Faktor-Faktor Yang Mempengaruhi Mahasiswa Dalam Memilih Jurusan Matematika Fakultas Sains Dan Teknologi Universitas Islam Negeri Alauddin Makassar "

Berdasarkan hasil penelitian kelayakan dan substansi program mahasiswa bersangkutan dengan ini dinyatakan Valid.

Demikian surat keterangan ini dibuat untuk digunakan sebagaimana mestinya.

Makassar,

November 2014

Kepala TIM Validasi

Program Studi Matematika

Wahidah Alwi, S.Si., M.Si

NIP: 1979020 1200912 2 002

TIM VALIDASI PROGRAM STUDI MATEMATIKA Fakultas Saíns dan Teknologi

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa, Telp. (0411) 8221400

Universitas Islam Negeri Alauddin Makassar

			3																	
	012	990.	.033	081	055	056	.074	.048	-,121	129	.708	.031	.053	.216	062	.053	113	092	067	.074
	-,025	079	.049	.039	001	.034	.026	043	063	.633	129	074	.075	171	301	081	.195	168	010	002
	.054	052	030	.112	760.	086	220	.061	.524	063	121	.138	156	7.119	.261	.135	.026	.257	106	128
	084	.034	.024	021	.130	052	172	.575	.061	043	.048	.065	311	5	143 E413	140	038	060	118	118
	.086	001	033	054	071	116	.462	172	220	.026	.074	028	.151	120	13	×.	950:	103	034	241
	033	016	.130	098	.029	.686	116	052	086	.034	056	005	041	188	037	18	100.	058	092	.026
	.018	040	028	165	.518	.029	071	.130	760.	001	055	118	066	.163	-041	071	6003	(g)	132	057
357	040	021	123	.371	165	098	054	021	.112	.039	081	.119	047	220	027	.014	049	.068	.112	.028
	.037	148	.321	123	028	.130	033	.024	030	.049	.033	.002	990.	080	.080	003	.138	204	029	056
	163	.385	148	021	040	016	001	.034	052	079	990.	.143	202	.212	104	.062	129	026	017	077
	.503	-,163	.037	040	.018	033	.086	084	.054	025	012	032	.340	106	030	104	.102	.287	288	168
	078	.063	022	089	025	.015	.088	070	082	011	081	750.	022	144	.062	110	249	222	.025	680.
	.073	053	035	007	.052	041	076	.058	.042	.022	.052	027	055	.022	600.	055	058	.051	.058	143
	077	.019	047	009	029	050	£.	051	049	110	014	.030	.001	.072	.203	139	321	097	.061	.181
	.046	-,083	043	.083	.041	600	-,115	.015	.065	.103	-,133	022	.021	062	073	093	162	.271	.085	168
	099	039	026	.014	034	.018	.135	074	077	002	.051	143	101	.158	031	212	071	133	.031	.611ª
	138	007	011	.046	064	051	016	061	052	005	038	.010	174	188	.089	365	194	426	.660ª	.031
	.145	012	-,083	.030	660	034	050	032	.133	095	-,055	.050	.029	.102	053	.163	020	.520ª	426	133
	650.	065	.064	024	.002	.063	031	024	.015	.126	077	107	.158	154	217	104	.409ª	020	194	071
	.055	.029	001	900	038	114	093	080	.073	048	.034	.027	130	.063	189	.669ª	104	.163	365	212
	016	.048	.034	012	038	022	076	081	140	178	039	134	067	202	.592ª	189	217	053	680.	031
	058	.101	035	103	060	.051	790.	.064	066	104	.140	172	194	.507ª	202	.063	154	.102	188	158
	.167	087	.026	020	033	024	.071	163	078	.041	.031	396	.591ª	194	067	130	.158	.029	174	101
	018	.071	.001	.058	068	003	015	.040	080	047	.021	.602ª	396	172	.134	.027	107	.050	010.	143
	X14	X15	X16	X17	X18	X19	X20	X21	X22	X23	X24	×	X	X3	×4	X5	9X	XX	X8	6X
												Anti-image	Correlation							

Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

97.026		3 .094	1144	4020	721.	690.	1158	090	080	3 .129	220'	199	192	.514ª	
4 .165	1226	3 .043	021	044	160	.108	.081	002	.052	.048	071	109	.590	192	
114	111	.088	169	.106	116	072	.254	.187	143	447	11.	.389ª	109	199	
.025	£	.118	139	157	.073	950.	045	.239	083	-,333	.586	*	15/	.075	
215	.266	170	.192	.179	002	085	131	146	205	.417ª	-333	4	048	129	~
.014	099	076	.027	056	030	.276	195	.048	.579ª	205	083	643	.052	080	
.073	066	111	053	.036	088	068	376	.703ª	.048	146	.239	.187	002	080	1
.174	023	018	218	094	055	356	.722ª	376	-,195	131	045	.254	.081	158	
960'-	137	095	059	160.	421	.780ª	-,356	068	.276	085	990.	072	.108	690.	
170	.049	130	.152	370	.722ª	421	055	088	030	002	.073	116	160	.127	
.082	176	.157	165	.522ª	370	.091	094	.036	056	179	157	.106	044	020	
366	012	285	.700ª	.165	.152	059	218	053	.027	192	.139	169	021	144	
.148	492	.738ª	285	.157	130	095	018	111	076	170	.118	.088	.043	.094	
100	.698ª	492	012	176	.049	137	023	990'-	099	.266	111	111	226	-,026	
.481ª	100	148	-366	.082	170	960'-	174	.073	410.	215	.025	114	165	202	
168	181	143	.089	168	077	056	.028	057	.026	.241	118	128	002	.074	
.085	.061	.058	.025	288	017	029	.112	132	092	034	118	106	010	067	
.271	097	.051	222	.287	026	204	.068	.192	058	103	060	.257	168	092	
162	321	058	.249	.102	129	.138	049	.003	.094	056	038	.026	.195	113	
093	139	055	110	104	.062	003	.014	071	.183	182	.140	.135	081	.053	
073	203	600	.062	030	104	080	027	071	037	-,150	143	.261	301	062	
062	.072	.022	144	106	.212	080	220	.163	.081	.129	.110	119	-171	.216	1000
.021	.00	055	022	.340	202	990.	047	990	041	.151	311	156	920.	.053	
022	.030	027	750.	032	.143	.002	.119	118	005	028	990.	.138	074	.031	
X10	X11	X12	X13	X1X	X15	X16	X17	X18	X19	X20	X21	X22	X23	X24	1

a. Measures of Sampling Adequacy(MSA)

Kampus II : Jalan Sulian Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

		ent Analysis	nodmoə
/////		n Method: F	
4 X	Z69°	1000.1	X24
	178.	000.1	X23
	169.	000.1	X22
	083.	000.1	X21
	162.	000.1	X20
	£09.	1,000	61X
1000	929.	1.000	81X
	718.	000.1	TIX
	9 1 7.	000.1	91X
	32T.	000.1	SIX
	£48.	000.1	ÞΙΧ
	£17.	000.1	X13
	70T.	000.1	X12
	ETT.	000.1	۱۱X
	₽ 87.	000.1	01X
	969.	000.1	6X
UNIVERSITAS ISLAM NEG	809.	000.1	8X
UNIVERSITAS ISLAM NEG	627.	000.1	LΧ
	£78.	000.1	9X
AIAUIJI	7 4 9.	000.1	GΧ
	117.	000.1	ÞΧ
MAKASSA	707.	000.1	£X
W /	₽ 27.	1.000	X2
	209.	000.f	١X
	Extraction	leitinl	
		səitilsn	Сошши

TIM VALIDASI PROGRAM STUDI MATEMATIKA Fakultas Sains dan Teknologi

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Universitas Islam Negeri Alauddin Makassar

				1	Total \	Total Variance Explained	ס			
Component		Initial E	Initial Eigenvalues	es	Extracti	Extraction Sums of Squared Loadings	ed Loadings	Rotatio	Rotation Sums of Squared Loadings	Loadings
	Total	% of Variance	riance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
	4.297	М	17.904	17.904	4.297	17.904	17.904	2.681	11.171	11.171
2	2.698		11.241	29.145	2.698	11.241	29.145	2.304	9.598	20.769
8	2.076	4	8.651	37.796	2.076	8.651	37.796	2.142	8.923	29.693
4	1.701	K	7.086	44.882	1.701	7.086	44.882	1.909	7.956	37.649
S.	1.467		6.111	50.993	1.467	6.111	50.993	1.891	7.878	45.526
9	1.263	A	5.264	56.257	1.263	5.264	56.257	1.687	7.030	52.556
7	1.205		5.021	61.278	1.205	5.021	61.278	1.523	6.347	58.903
80	1.104	S	4.598	65.876	1.104	4.598	65.876	1.452	6.050	64.953
6	1.076	5	4.482	70.358	1.076	4.482	70.358	1.297	5.405	70.358
9	.934	3	3.890	74.248						
11	.877	A	3.656	77.904					N.	
12	.794		3.310	81.213			V			
13	.698	R	2.908	84.122				X		
41	.582		2.426	86.548						
-12 -22	.532	2	2.218	88.766			1	7		and the second
16	.481		2.004	90.770	Audako. u)	_		
17	396		1.649	92.418				_	=	
18	.364		1.518	93.937				/		

Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

	2 Plot
95.227 96.453 97.488 98.478 99.275	YERSI AS ISLAM NEGERI
1.290 1.226 1.035 .990 .797.	Extraction Method: Principal Component Analysis.
.310 .294 .248 .238 .191	Method: Principal O
19 20 22 23 24	Eigenvalue F T T

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Component Matrix^a

		1000		Compo	Henr Watrix				
				Г	Component		r		
	1	2	3	4	5	6	7	8	9
X1	.002	.416	470	.280	227	.154	116	084	.194
X2	.270	.595	176	.391	227	.000	239	.040	.067
Х3	.172	.424	351	144	033	.282	379	144	.330
X4	023	.568	202	239	.528	013	.103	.021	023
X5	.464	.340	292	.184	.152	014	.034	.089	405
X6	.237	.162	050	.023	.260	.278	.596	467	.263
X7	.328	.400	.287	268	166	362	.105	223	296
X8	.469	.565	.083	117	097	132	.124	.075	.002
X9	.364	.150	269	.217	254	.012	.418	.404	134
X10	.317	136	056	.319	.339	.588	.115	.200	130
X11	.690	172	.158	132	216	.203	.106	354	.025
X12	.667	143	.132	.178	196	.053	011	384	058
X13	.654	060	.091	141	029	.252	399	.074	158
X14	.400	214	071	463	140	.080	.181	.436	.412
X15	.674	302	.090	.146	125	153	.222	.198	.151
X16	.756	302	008	.172	020	212	071	033	035
X17	.675	208	073	VE071	TAS .341	AM240	GEF.277	024	.239
X18.	.502	192	306	.081	.416	290	145	.070	.060
X19	.003	.198	.628	.008	.101	019	089	.063	.383
X20	.042	.280	.511	.483	.432	166	011	.014	.017
X21	.130	.598	.335	011	.011	071	.118	.184	.201
X22	.010	.065	.616	.349	230	S.296	146	.150	009
X23	.248	.405	.085	522	135	.071	-/.066	.065	181
X24	.205	044	.298	385	.312	.371	-079	.096	256

Extraction Method: Principal Component Analysis.

a. 9 components extracted.

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Rotated Component Matrix^a

				Rotated Cor	Component				
	1	2	3	4	5	6	7	8	9
X1	045	084	057	.706	093	.183	201	072	.071
X2	.090	.050	.187	.679	.227	.319	126	188	117
Х3	041	.095	.109	.773	060	185	.150	.135	.095
X4	566	.206	.343	.195	.031	.049	.207	106	.367
X5	.032	.298	.266	.221	117	.539	.215	290	.049
X6	.159	006	.020	.062	.044	.056	.017	.014	.915
X7	.210	.015	.800	107	.080	.025	052	149	.025
X8	.088	.113	.608	.236	.233	.288	.026	.099	.114
X9	.097	003	.090	.078	070	.789	085	.193	.029
X10	.125	.103	425	.046	.084	.415	.558	059	.225
X11	.765	.101	.197	.012	056	013	.205	.169	.253
X12	.784	.196	.110	.066	.015	.069	.061	104	.131
X13	.453	.286	.156	.185	.008	.039	.549	.104	232
X14	.099	.185	.063	048	035	.118	.115	.874	.021
X15	.521	.379	014	VER.179	TAS .140	AM .372	GER.077	.336	.015
X16	.603	.566	.039	069	008	.220	.015	.040	074
X17	.280	.823	.043	.057	.062	100	.123	.163	.015
X18	.060	.800	064	.016	103	.128	.037	.001	.022
X19	.009	037	.095	039	.710	262	.024	130	.023
X20	080	.188	006	A 115	.726	.078	.003	440	097
X21	141	064	.411	.167	.561	.145	-,019	106	.110
X22	.294	366	132	.001	.590	.062	.181	7,092	245
X23	014	089	.632	.139	048	005	.323	186	055
X24	.011	.020	.148	208	.056	101	.715	1012	.045

Extraction Method: Principal Component Analysis.

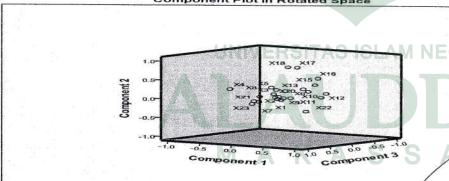
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 12 iterations.

Fakultas Sains dan Teknologi

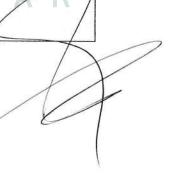
Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400


Component Transformation Matrix

			- Compon	Tone manor	offination wa	UIX			
Component	1	2	3	4	5	6	7	8	9
1	.619	.543	.286	.136	.068	.326	.257	.182	.108
2	344	170	.587	.552	.324	.181	002	197	.162
3	.248	250	.177	450	.734	250	.171	052	095
4	.194	.035	526	.173	.351	.421	298	514	038
5	469	.558	171	202	.169	118	.377	260	.383
6	.127	458	377	.307	021	.045	.678	.116	.250
7	032	253	.076	432	047	.468	234	.186	.658
8	402	.060	117	109	.228	.530	.173	.460	484
9	023	.157	274	.332	.381	324	360	.578	.275

Extraction Method: Principal Component Analysis.


Rotation Method: Varimax with Kaiser Normalization.

Component Plot in Rotated Space

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure	of Sampling Adequacy.	.645
Bartlett's Test of Sphericity	Approx. Chi-Square	511.171
	df	253
	Sig.	.000

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

- 8
S
ice
۳.
듣
<u>a</u>
2
0
2
naç
Ē
Ē
Ē
Ē
Anti-imag

	$\overline{}$	_		_		_		-					_	-				
١	X24	.042	.014	131	007	.054	077	027	053	.036	125	026	.064	-,107	000	.057	.027	061
	X23	039	.033	115	175	041	.129	086	012	011	114	119	.028	022	019	087	.046	.057
	X21	.032	160	.074	105	.073	026	052	056	067	700.	047	.055	063	093	.042	.028	036
١	X20	.023	.049	090.	023	079	031	800	047	.131	÷.	114	073	.068	.138	029	057	-009
	X19	.010	038	.042	100	.131	790.	013	062	900	.020	000	036	.002	025	025	.128	087
	X18	088	020	107	071	055	001	.082	057	021	.031	021	.046	110:	600	031	023	206
	X17	.045	004	960	048	010	029	100.	.062	.033	.075).002	017	920-	056	010	125	396
Ì	X16	900	.022	039	.045	.003	.065	081	014	031	040	051	48	-038	000	-: 54	,823	17/
I	X15	.082	098	760.	790.	.037	064	.002	013	048	078	410.	050	15/	17	380	154	010
I	X14	027	.182	052	033	.049	.058	.142	135	093	.040	073	.070	073	.509	1	.040	056
	X13	.046	023	088	.059	046	.142	094	.003	.039	190	013	123	.462	073	.057	028	079
ses	X12	021	019	.017	007	034	032	.014	.030	074	.073	198	434	123	020.	050	034	017
e Matri	X11	.023	007	.028	.115	059	161	032	.021	.087	043	.381	198	013	073	.014	051	.002
Anti-Image Matrices	X10	025	.022	030	065	990	107	.147	.053	103	.625	043	.073	190	.040	078	040	670.
F	6X	087	072	960	.001	125	046	065	.010	769.	103	780.	074	039	093	048	031	.033
I	X8	.014	092	106	.063	182	106	207	.459	.010	.053	.021	.030	.003	135	013	014	.062
Ì	X Z	600	.038	620	073	.075	017	.545	207	065	147	032	.014	094	.142	.002	081	1000
Ì	9X	074	.093	095	145	.063	.661	017	106	046	107	161	032	.142	.058	064	990.	029
1	X5	.005	059	.047	136	.571	.063	.075	182	125	990	059	034	046	.049	.037	.003	010
İ	× 4	.064	015	106	.591	136	145	073	.063	.000	065	.115	007	.059	033	790.	.045	048
-	×3	099	117	769.	106	.047	095	620.	106	.094	030	.028	.017	088	052	760.	039	960'-
	X2	217	492	117	015	059	.093	.038	092	072	.022	007	019	023	.182	098	.022	004
alas commen	×	.658	217	660'-	.064	.005	074	600.	410.	087	025	.023	021	.046	027	.082	900.	.045
Manual Property and Publishers		×	X X	×3	× 4	X5	9X	XX	X8	6X	X10	X11	X12	X13	X14	X15	X16	X17
		Anti-image	Covariance															

Kampus II : Jaian Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

		W. San Jan San Jan San Jan San Jan San Jan San Jan San Jan San Jan San Jan San Jan San Jan San Jan San Jan San																	
035	081	.030	990.	-,151	.737	.061	.023	.198	011	.083	110	043	090	.050	184	050	.114	184	100.
.011	.025	000	037	.640	151	060	.059	186	284	067	199	-,145	022	017	.180	241	.053	040	033
.125	044	185	.582	037	990	.051	299	.125	179	.127	041	092	108	106	.012	100	.109	122	171
039	193	.577	185	000	.030	.037	.092	.085	039	137	050	.014	092	.207	184	.243	146	.132	.254
.047	.700	193	044	.025	081	.015	065	.065	.001	.207	860.	022	109	.008	.031	117	064	.003	042
.537	.047	039	.125	.011	035	148	038	.190	126	099	002	.152	115	034	.053	046	960.	022	710.
206	087	009	036	750.	061	.088	008	197	100	022	057	8/	145	063	050	.obs	645	-184	-, 25
023	.128	057	.028	.046	.027	.013	.055	090	.103	700.	.140	193	166	9	680:	146	060	073	660.
031	025	029	.042	087	.057	.162	224	.201	.140	620.	127	.004	036	093	159	.037	121	.135	362
600	025	.138	093	019	000	047	.363	095	060	160.	.100	.271	280	157	2	167	.149	150	.515ª
011	.002	.068	063	022	107	.083	049	168	.112	089	.258	187	700.	690.	354	031	275	.726ª	150
.046	036	073	.055	.028	.064	039	042	.033	015	068	060	.030	.068	134	140	487	751ª	275	.149
021	060	114	047	119	026	.046	017	090	.242	126	320	071	.049	.169	088	.704ª	487	031	167
.031	.020	-111	700.	114	125	038	.040	049	107	110	166	.251	860.	156	.508ª	088	.140	354	.071
021	900	131	067	011	.036	128	123	.145	.002	.198	068	105	.018	.661ª	-,156	.169	134	690.	.157
057	062	047	056	012	053	.025	194	203	.122	-,355	193	415	.656ª	.018	860.	.049	.068	700.	280
.082	013	.008	052	086	027	016	.073	.138	-,129	134	028	.583	415	105	.251	071	030	187	.271
-,001	290.	-,031	026	.129	077	112	.164	152	232	.102	.399ª	028	193	068	166	320	090'-	.258	.100
055	.131	079	.073	041	.054	800.	112	080	234	.681ª	.102	.134	355	198	110	126	068	089	160.
071	.001	023	105	175	007	.102	028	178	.565ª	234	232	129	.122	.002	107	.242	015	.112	060
107	.042	.050	.074	115	.131	-,158	217	.515ª	178	.080	152	.138	203	.145	-,049	090	.033	168	095
020	038	.049	160	.033	410.	382	.594ª	217	028	112	164	.073	194	123	.040	017	042	049	.363
088	.010	.023	.032	039	.042	.621	382	-,158	.102	800.	112	.016	.025	128	038	.046	-,039	.083	047
X18	X19	X20	X21	X23	X24	×	×	X3	X 4	X5	9X	×	8X	6 X	X10	X11	X12	X13	X14
						Anti-image	Correlation						ē						2-
		_	-	-	_	-3-	-	-	-	-								_	

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

-										2
	.107	.055	113	055	112	.046	.100	220	.553ª	70000
	-,175	101	.113	.019	.037	001	060	.588ª	220	
	780.	.064	076	.223	690'-	319	.595ª	060	.100	
	061	132	020	071	304	.461ª	319	001	.046	
	048	.269	165	720.	.503ª	304	690'-	.037	112	
	068	055	446	.696°	720.	071	.223	.019	058	
	026	350	.738ª	-,446	-,165	020	076	.113	113	1
	433	.777 ^a	350	055	.269	132	.064	101.	690	/
	.719ª	433	026	068	048	061	780.	175	107	
9	362	660	125	.017	042	.254	171	033	.001	
- 8	.135	073	184	022	.003	.132	122	040	184	
	121	060	042	960	064	146	109	.053	114	
	.037	146	.005	046	117	.243	100	241	050	
	159	089	.150	.053	.031	184	.012	.180	184	
•	093	990	.063	034	800	.207	106	017	.050	
	030	037	.145	-,115	109	092	108	022	090	2000
•	900	193	.003	.152	022	.014	092	145	043	
	127	.140	057	002	860.	050	041	.199	110	
	620.	700.	022	099	.207	137	.127	067	.083	
•	.140	.103	100	126	.001	039	179	284	011	
	.201	060	-,197	.190	.065	.085	.125	-,186	.198	
	224	.055	008	038	065	.092	299	.059	.023	
	.162	.013	.088	148	.015	.037	.051	060	.061	
,	X15	X16	X17	X18	X19	X20	X21	X23	X24	
									ı	

a. Measures of Sampling Adequacy(MSA)

Fakultas Sains dan Teknologi

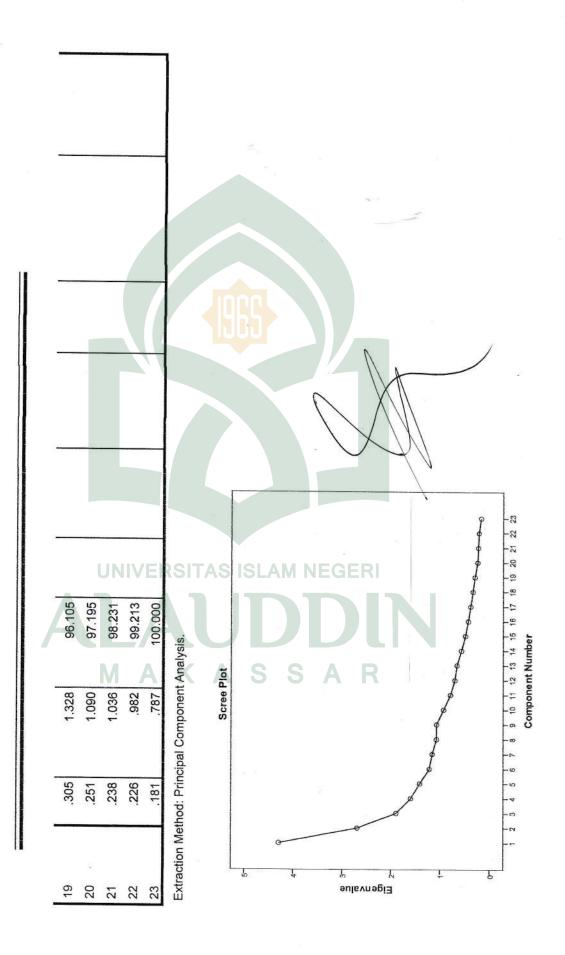

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Communalities

	Initial	Extraction
X1	1.000	.604
X2	1.000	.725
Х3	1.000	.720
X4	1.000	.677
X5	1.000	.650
X6	1.000	.902
X7	1.000	.709
X8	1.000	.624
X9	1.000	.704
X10	1.000	.805
X11	1.000	.775
X12	1.000	.726
X13	1.000	.774
X14	1.000	.843
X15	1.000	.724
X16	1.000	.751
X17	1.000	.795
X18	1.000	.708
X19	1.000	.658
X20	1.000	.756
X21	1.000	.661
X23	1.000	.587
X24	1.000	.580

Extraction Method: Principal Component Analysis.


Kampus II : Jaian Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

pou
Knlai
Co F
arian
otal V
to

	The state of the s				T	Total Variance Explained	plained			
		Initial Eigenvalues	lues		Extracti	Extraction Sums of Squared Loadings	ared Loadings	Rota	Rotation Sums of Squared Loadings	oadings
Component	Total	% of Variance	Cumu	lative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
-	4.297	18.682	A	18.682	4.297	18.682	18.682	2.507	10.899	10.899
2	2.696	11.721	K	30.403	2.696	11.721	30.403	2.357	10.248	21.147
8	1.902	8.269		38.672	1.902	8.269	38.672	2.097	9.118	30.265
4	1.605	6.979	A	45.651	1.605	6.979	45.651	1.930	8.393	38.659
2	1.421	6.179		51.831	1.421	6.179	51.831	1.690	7.347	46.005
9	1.223	5.317	3	57.147	1.223	5.317	57.147	1.655	7.195	53.200
7	1.162	5.054	S	62.201	1.162	5.054	62.201	1.496	6.504	59.704
8	1.077	4.682	3	66.883	1.077	4.682	66.883	1.474	6.410	66.114
6	1.074	4.668	A	71.551	1.074	4.668	71.551	1.250	5.437	71.551
10	.932	4.051		75.602	ìΕ				\	9
+	.796	3.459	R	79.062	RI				J	
12	.706	3.069		82.130						
13	.662	2.879		85.009						
14	.575	2.499		87.508			*		/	
15	.496	2.155		89.663				11000		
16	.438	1.902		91.565						/
17	392	1.706		93.271		U				/
18	.346	1.506		94.777					15.000	-

Kampus II : Jalan Sulian Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Component Matrix^a

				Compo	Component				
	1	2	3	4	5	6	7	8	9
X1	.003	.425	565	011	139	.040	.217	.156	.110
X2	.269	.594	344	.186	242	135	.211	.139	081
X3	.172	.432	306	335	.207	127	.351	.210	.269
X4	022	.579	.004	051	.537	009	204	069	.061
X5	.464	.348	316	.118	.149	022	128	315	249
X6	.237	.165	014	.107	.237	.628	089	102	.581
X7	.328	.397	.419	089	299	107	103	385	.021
X8	.469	.563	.123	093	106	016	220	028	.051
X9	.364	.155	353	.019	248	.296	389	.087	338
X10	.317	137	186	.291	.399	.458	.194	.113	383
X11	.689	176	.169	145	171	.276	.254	118	.190
X12	.666	148	.041	.150	269	.125	.322	173	.120
X13	.654	063	.107	159	.093	111	.412	.043	338
X14	.400	208	.092	495	.033	.111	315	.522	004
X15	.674	306	.003	.117	197	.050	304	.164	.041
X16	.756	303	076	.156	AS-1102	AM185	GER.059	079	.051
X17	.675	202	.022	.074	.279	390	.004	.155	.195
X18	.503	181	251	.145	.355	373	231	017	.138
X19	.002	.181	.588	.264	045	022	.154	.424	.060
X20	.040	.262	.313	.743	.149	099	052	.009	.019
X21	.130	.590	.353	A .161	A119	S .083	-,049	.329	116
X23	.248	.405	.253	509	.045	051	046	2.155	087
X24	.204	050	411	208	.456	.133	.127	138	255

Extraction Method: Principal Component Analysis.

a. 9 components extracted.

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Rotated Component Matrix^a

					Component				
	1	2	3	4	5	6	7	8	9
X1	029	099	067	.717	067	.183	169	064	.062
X2	.104	.051	.160	.678	.236	.316	102	209	129
Х3	062	.115	.152	.758	061	212	.123	.164	.118
X4	552	.139	.339	.218	.100	.035	.245	108	.327
X5	.010	.308	.296	.231	138	.504	.227	295	.054
X6	.142	.018	.035	.068	.037	.045	.029	.010	.933
X7	.241	015	.763	098	.158	.045	066	163	009
X8	.066	.159	.621	.218	.240	.275	020	.070	.149
X9	.091	.015	.074	.091	048	.804	048	.173	.020
X10	.148	.082	423	.044	.070	.398	.628	071	.181
X11	.768	.127	.199	.003	037	004	.195	.180	.241
X12	.799	.200	.084	.070	.029	.081	.084	106	.098
X13	.478	.262	.152	.176	.047	.037	.568	.116	288
X14	.081	.212	.071	064	.031	.138	.096	.867	.026
X15	.466	.466	001	197	.094	.368	105	.301	.064
X16	.554	.623	.055	073	053	.204	.002	.027	048
X17	.258	.811	.036	VER.064	AS .094	AM-1111	GER.146	.150	009
X18	.000	822	031	.027	134	.091	.042	007	.048
X19	.063	070	.020	060	.763	233	.041	.074	022
X20	096	.220	026	134	.637	.052	.001	506	.123
X21	066	138	.312	.172	.686	.190	.041	.053	.023
X23	034	052	.684	.112	041	S025	.243	.201	.018
X24	.007	.033	.201	237	.031	133	.674	.084	.053

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 12 iterations.

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Component Transformation Matrix

				one transfe	illiation wa	uix			
Component	1	2	3	4	5	6	7	8	9
1	.594	.579	.294	.129	.078	.315	.257	.165	.105
2	324	190	.563	.561	.355	.181	.001	214	.147
3	.108	147	.382	561	.555	393	.193	.081	012
4	.065	.219	417	135	.503	.223	152	647	.107
5	507	.387	149	007	064	209	.646	043	.323
6	.202	545	189	103	001	.351	.243	.148	.641
7	.445	258	222	.472	.037	479	.376	250	171
8	127	.058	411	.281	.549	.022	061	.642	123
9	.118	.207	.026	.152	019	517	502	.063	.629

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

Factor Analysis

KMO and Bartlett's Test ERSITAS ISLAM NEGERI

Kaiser-Meyer-Olkin Measure	of Sampling Adequacy.	.658
Bartlett's Test of Sphericity	Approx. Chi-Square	486.931
	df	231
	Sig.	.000

TIM VALIDASI PROGRAM STUDI MATEMATIKA Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar Kampus II : Jalan Sulian Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

					41														
	- 074	.027	.063	143	746	049	.041	184	-038	005	747	14	043	206	000	108	162	012	094
	012	900	033	.667	- 143	039	.028	161	-250	060	. 143	017	- 003	1/2			_		154
	042	187	.583	033	.063	.047	297	.120	-194	132	- 093	1,18		-11					
	193	.579	187	900	.027	.032	101	.078	.052	133	.012	103	_ ^		177	١ _	_		_
	707.		042	.012	074	.026	.083	.081	_				2	1,	A	1.			
	048	040	.125	.012	035	149	039	191	130	-060				2.5.		_	1 25		
	085	011	038	990.	065	082	.001	-				-							
	.1250							0208	0117					7 .143	3014	045		120	034
		055	0 031	9 .035	1 .036	0.029	8 .033	2070	5 .140	3008	191	010		067	108	082	-,114	.087	423
	019	032	.040	079	.051	.150	208	.185	.115	.093	.000	055	103	184	004	130	.175	354	.729ª
	031	.142	092	031	.007	036	.353	081	038	.081	.275	267	151	.089	143	.156	182	.524ª	354
	014	.080	062	055	098	.116	960:-	135	.183	120	186	.059	060.	326	990.	269	.732ª	182	.175
	033	075	.054	.036	790.	046	033	.024	029	062	.028	750.	138	.132	536	.730ª	269	.156	130
	050	.119	059	102	051	.011	.038	.012	.182	099	085	013	.156	152	.732ª	536	950.	143	004
	.032	119	.003	144	143	058	690	920	152	095	.250	690.	170	.480ª	152	.132	326	680.	184
	.010	.130	070	002	.031	137	113	.137	014	192	107	.005	.662ª	170	.156	138	060.	151	103
	053	054	062	.010	068	.004	168	239	180.	344	428	.664ª	.005	690	013	- 750.	650.	267	- 055
	012	700.	052	086	030	.013	820.	.136	140	.138	.573ª	.428	107	.250	085	.028	186	.275	0000
	.127	077	720.	950	.062	.020	-,131	760.	.218	.689ª	.138	344	192	095	660	062	120	.081	.093
3	.016	031	117	161	026	620.	.010	222	-625°	218	140	.081	014	152	.182	029	.183		.115
	.053			_	-													038	
94		.047		103	.124	179	197	.518ª	222	760.	.136	239	.137	076	.012	.024	-,135	081	.185
	049	.055	-,161	.016	.025	371	.617	-,197	.010	131	.078	•.168	113	690.	.038	-,033	960'-	.353	208
	.018	.020	.029	026	.034	.632ª	371	179	620.	.020	.013	400.	137	058	.011	046	.116	036	.150
	X19	X20	X21	X23	X24	×	SZ	ee X	× 4	X5	×	8X	6X	X10	X11	X12	X13	X14	X15
				ē		Anti-image	Correlation												

Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sulian Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

_			-	-				
.072	120	056	102	.041	960.	203	.558	
075	.128	.019	.018	600	053	.642ª	203	
.071	078	.224	065	322	.589ª	053	960.	1
126	023	071	301	.453ª	322	600	140	\
.259	161	720.	.525ª	-,301	065	.018	501.	
055	-,447	.693ª	720.	071	.224	.019	056	
346	.738ª	447	161	023	078	.128	120	
.792ª	346	055	.259	126	1.70.	.075	.072	
423	034	069	036	067	.083	154	460.	
780.	120	.017	052	.261	168	054	.012	
114	175	022	023	.150	116	960'-	162	
082	045	960	059	150	.107	990.	.108	
108	014	049	091	.240	119	191	090	À
067	.143	.054	.048	-,195	900.	.221	206	
057	090	035	.015	204	-,109	003	.043	
010	.137	118	092	0103	118	710.	0114	
191	.001	.152	019	.012	093	143	047	
008	016	660	.199	133	.132	090	960.	
.140	-117	130	.025	-,052	194	-,250	038	
070	208	.191	.081	.078	.120	161	.184	0.00
.033	.001	-,039	083	101	297	.028	.041	400 A00 A
.029	.082	149	.026	.032	.047	039	.049	New Co. 45
X16	X17	X18	X19	X20	X21	X23	X24	A STATE OF
						_	_	

a. Measures of Sampling Adequacy(MSA)

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II: Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Communalities

	Initial	Extraction
X1	1.000	.600
X2	1.000	.696
Х3	1.000	.707
X4	1.000	.645
X5	1.000	.652
X7	1.000	.711
X8	1.000	.617
X9	1.000	.697
X10	1.000	.803
X11	1.000	.697
X12	1.000	.707
X13	1.000	.661
X14	1.000	.844
X15	1.000	.721
X16	1.000	.748
X17	1.000	.794
X18	1.000	.709
X19	1.000	.657
X20	1.000	.756
X21	1.000	.658/
X23	1.000	.584
X24	1.000	.567

Extraction Method: Principal

Component Analysis.

RAWIES SIN CENTROLOGI Universies Isem Negeri Aleminin Melensur Kanna Mendensia 36, Americ Potor, Gava Tepaden) 822400

ı	8
	Varia
-	ance
-	핥
-	

		E		1	2		,	3	The same that the same same same same same same same sam
9		II III E LUA NAILES	2	DAIRCE	Shinem representation of the company	Shinemine	KORIO	ROBINO SUISOI SQUARED LOBOINGS	SOLIDBOTTS
Component	Total	%ofVariance	Ourn.lative%	Total	%of Variance	Ourn.lettive%	Total	%of Variance	Ourulative%
_	4254	19,337	19.337	4254	752.61	19.337	2.612	11.875	11.875
2	2678	12174	31.511	2678	12174	31.511	2286	10.392	22267
ω	1,902	8.645	40.155	1902	8.645	40,156	2.103	9.561	31.828
4	1,602	7280	47.435	1.602	7280	47.435	1.944	8.838	40.666
S	1.408	6,399	53.834	1.408	6,399	53,834	1.692	7.689	48,355
0	1.188	5299	59.134	1.188	5299	59.134	1.653	7.515	55.870
7	1.147	5212	64,346	1.147	5212	04,346	1.476	6.709	62.579
8	1.077	4.894	69239	1.077	4.894	69239	1.48	6.667	69239
9	530	4241	73.481						3
10	.88	3.675	77.156					-A	A
1	.709	3222	80.378						
12	.688	3.034	83,412					· ·	3
13	.580	2.634	86.047						
4	.515	2341	88.388					/-	
ঠ	.48.	2184	90.572						11/
6	·48	1,982	92,554					130	
17	.38	1.731	94285						
18	.346	1573	95,858						X
19	251	1.140	999.398						
8	238	1.084	98.082						V
23	228	1.035	99.117						1
22	.194	.883	100.000						1

Extraction Method: Principal Component Analysis.

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Component Matrix^a

				Comp	onent			
	1	2	3	4	5	6	7	8
X1	007	.423	565	006	144	.187	129	.173
X2	.267	.608	346	.212	189	.154	126	.123
Х3	.162	.433	307	338	.207	.223	358	.255
X4	040	.567	.005	073	.523	177	.090	058
X5	.461	.358	317	.124	.177	069	.185	354
X7	.324	.407	.417	072	286	165	107	375
X8	.457	.569	.122	087	109	219	.044	019
X9	.361	.161	354	.025	270	166	.560	.025
X10	.309	146	184	.264	.358	.455	.496	.043
X11	.683	175	.170	156	231	.285	067	084
X12	.666	140	.041	.155	283	.302	154	149
X13	.667	036	.104	141	.146	.402	037	016
X14	.405	199	.091	499	.002	219	.268	.513
X15	.677	296	.003	.121	203	259	.151	.169
X16	.766	285	077	.168	067	139	135	068
X17	.681	187	.022	.077	.331	174	337	.188
X18	.506	173	251	VER.143	AS .402	△ M370	GER203	.008
X19	.000	.183	.588	.269	027	.134	068	.428
X20	.033	.257	.314	.741	.188	072	018	.012
X21	.121	.594	.352	.170	108	.026	.783	.303
X23	.248	.419	.251	500	.050	045	(.032	.168
X24	.201	052	.412	228	.434	S.223	.185	173

Extraction Method: Principal Component Analysis.

a. 8 components extracted.

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Rotated Component Matrix^a

				Comp	onent			
	1	2	3	4	5	6	7	8
X1	042	093	063	.722	069	.178	156	063
X2	.122	.036	.155	.684	.225	.284	124	203
Х3	051	.118	.156	.754	061	208	.148	.169
X4	552	.161	.359	.225	.115	.065	.326	103
X5	.036	.297	.299	.239	135	.503	.244	293
X7	.248	021	.761	097	.153	.033	093	166
X8	.071	.161	.629	.224	.241	.277	011	.068
X9	.095	.008	.078	.100	050	.798	054	.170
X10	.171	.075	414	.045	.080	.411	.644	070
X11	.760	.121	.199	006	026	.027	.187	.167
X12	.796	.185	.078	.065	.036	.099	.063	116
X13	.555	.219	.135	.165	.029	009	.494	.123
X14	.100	.206	.073	069	.030	.147	.093	.866
X15	.466	.458	002	195	.098	.384	117	.293
X16	.573	.605	.048	074	054	.203	029	.022
X17	.293	.801	.034	.061	AS .092	AM -115	GER 131	.152
X18	.022	.824	026	.031	132	.093	.053	006
X19	.068	074	.019	060	.762	237	.029	.078
X20	105	.225	019	123	.648	.067	.031	504
X21	056	143	.316	.178	.682	.180	,041	.058
X23	004	063	.682	.108	044	S030 ₄	243	.204
X24	.051	.027	.206	243	.029	146	658	.085

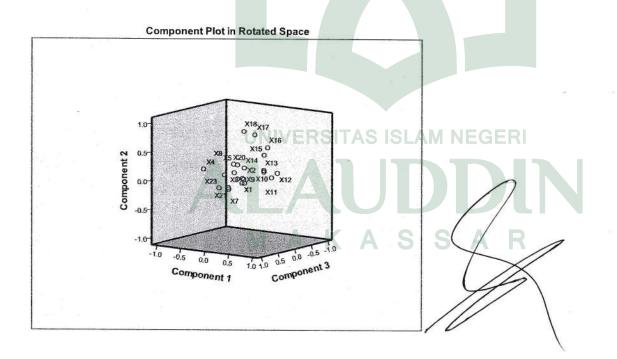
Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 18 iterations.

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar


Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Component Transformation Matrix

Component	1	2	3	4	5	6	7	8
1	.632	.565	.288	.120	.073	.313	.232	.165
2	310	172	.585	.576	.356	.178	.032	202
3	.117	151	.377	569	.555	392	.173	.080
4	.055	.226	397	112	.517	.236	164	652
5	493	.472	119	.013	026	213	.684	078
6	.451	487	307	.350	.059	198	.523	160
7	176	328	088	321	.070	.756	.354	.221
8	105	.096	397	.304	.533	071	145	.648

Extraction Method: Principal Component Analysis.

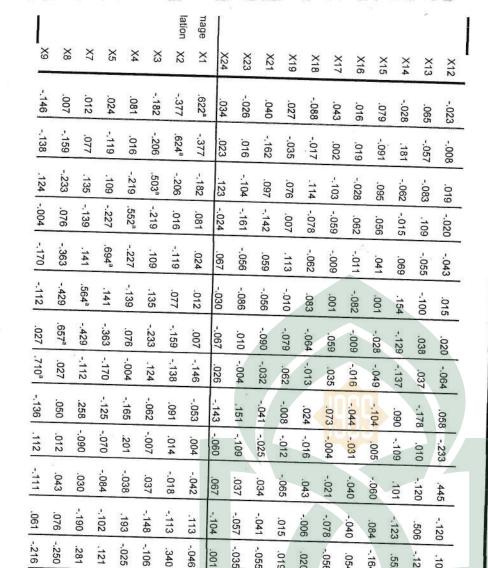
Rotation Method: Varimax with Kaiser Normalization.

Factor Analysis

KMO and Bartlett's Test

Bartlett's Test of Sphericity Approx. Chi-Square Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 453.773 210 .668 .000

Anti-image Matrices


								Covariance	Anti-image	
X11	X10	X9	X8	X7	X5	X ₄	X	X2	×	
.002	035	102	.004	.007	.015	.052	116	220	.667	×
.007	.053	084	-,079	.041	065	.009	116	.510	220	X2
004	040	.083	127	.078	.065	136	.615	116	116	ХЗ
.106	107	002	.042	081	137	.626	136	.009	.052	X4
036	078	112	193	.080	.587	137	.065	065	.015	X5
045	.155	071	220	.545	.080	081	.078	.041	.007	X7
.006	.028	.016	.482	220	193	.042	127	079	.004	X8
.064	095	.731	.016	071	112	002	.083	084	102	X9
060	.668	095	.028	.155	078	107	040	.053	035	X10
.450	060	.064	.006	045	036	.106	004	.007	.002	X11
233	.058	064	.020	.015	043	020	.019	008	023	X12
.010	178	.037	.038	100	055	.109	083	057	.065	X13
109	.090	137	129	.154	.069	015	062	.181	028	X14
.005	104	049	028	.001	.041	.056	.095	091	.079	X15
031	044	016	009	082	011	.062	028	.019	.016	X16
004	.073	.035	.059	.001	009	059	103	.002	.043	X17
016	.024	(3)	064	.08		078	14.	017	088	X18
012	008	.062	1.678	6	.113	.007	.076	035	.027	X19
012 025 109 060	.041	032	090	198	.059	142	.097	162	.040	X21
109	.151	004	.010	2.086	056	161	104	.016	026	X23
060	-,143	.026	067	030	.067	024	.123	.023	.034	X24

TIM VALIDASI PROGRAM STUDI MATEMATIKA

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sulian Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

-.041

-.055

.033

-.046

.015

.019 .020

-.033

.119

-.098

-.127

-.072 -.034

.650

-.035

.080

-.057

-.035

-.079

.036 .015

.066

.012 .126 .038

-.035

.667

-.144

-.006 -.078 -.040

-.035

-.028 -.128

-.208

540 .208

.038

.126

.012 .016

-.056

-.014

.398

-.098

-.046

.066

-.065

-.123

.552

-.164

.054

-.056 -.078

.020

.019 .015

-.055

.001

.084

-.164

.398

-.159

-.014

-.035

-.033

-.079

.054

-.159

.335

-. 128

-.028

.119

.015 .033

.036

.039 .053 -.120

.101

-.040

-.021

.043

-.065

.034 -.041

.037

.067

R

.506

-.123

.084

-.040

-.006

-.057 -.035

-.104

.113

-.046

.152

.083

.060

.048 .747

104

.001

.053

039

.065

.034

.080

-.144

.193

.112 .192

.135 -.061

-.118 -.019

-.207

.198

.110

-.162

-.250

.121

.085

-.025

-.110 - 134

.168 .009

.095

.153

281

.001

-.106 -.025

.340

-.203

.046 .033

.004

-.032 -.147

-.055 .038 -.072 .016 -.127 .778

.027

.038

-.250

-.024 -. 191

.135 .001

-.126 -.021

> -.130 -.016

.018 -.111

-.091 -.063

-.032

.066

.082 | -.047 | -.005

TIM VALIDASI PROGRAM STUDI MATEMATIKA

Universitas Islam Negeri Alauddin Makassar Fakultas Sains dan Teknologi

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Kampus II : Jaian Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

•	202	103	.115	170	.001	860.	820.	119	053	095	.115	204	.552ª
	.227	199	.068	099	058	153	720.	.128	.020	.022	053		204
	062	046	.063	072	091	.064	.032	091	.212	179	.621	053	15
-	012	020	110	.023	.029	059	.234	176	.059	.505°	/179	.022	095
	140.	033	780.	011	.037	074	065	450	.695ª	.059	.212	.020	053
-	141	600	049	174	119	036	351	.733ª	450	176	160	\$	119
•	094	080	103	960'-	.125	436	.794ª	351	065	.234	.032	720.	820.
-	202	.012	142	.187	349	.723ª	436	036	074	059	.064	153	860.
	.148	219	.205	232	.489ª	349	.125	-,119	.037	.029	091	058	.001
	-,306	.021	252	.741ª	232	.187	960'-	174	011	.023	072	099	170
	.105	521	.742ª	252	.205	142	103	049	780.	110	.063	.068	.115
))-	110	.764ª	521	.021	219	.012	080	600'-	033	020	046	199	103
	.492ª	110	.105	306	.148	202	094	141	.041	012	062	.227	202
97 <u>-</u>	136	.112	<u>+</u>	190.	216	091	032	990.	021	.082	047	005	.035
	.050	.012	.043	920.	250	063	024	.135	126	130	1.161	.018	111 111
-	.258	090	.030	190	.281	100.	191	.001	.153	016	094	143	047
	125	070	084	102	.121	.085	025	019	110	.168	360.	060	.101
13. 5	-,165	.201	.038	.193	025	112	.135	-118	134	600.	223	250	036
-	062	007	.037	148	106	.192	061	207	.198	.110	154	162	.182
_	160.	410.	.018	113	.340	.203	.046	400.	-,032	055	.280	.027	.038
:3 -5	.053	400.	.045	.113	.046	.152	.033	.083	- 147	- 860.	. 090.	-039	.048
11				2.00									
	X10	X11	X12	X13	X14	X15	X16	X17	X18	X19	. X21	X23	X24

a. Measures of Sampling Adequacy(MSA)

Fakultas Sains dan Teknologi

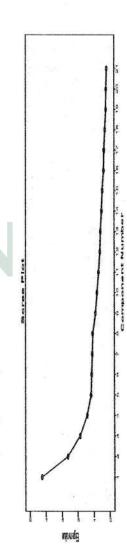
Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Communalities

	Communaii	ues
_	Initial	Extraction
X1	1.000	.580
X2	1.000	.730
ХЗ	1.000	.776
X4	1.000	.629
X5	1.000	.645
X7	1.000	.721
X8	1.000	.616
X9	1.000	.681
X10	1.000	.786
X11	1.000	.695
X12	1.000	.708
X13	1.000	.655
X14	1.000	.865
X15	1.000	.718
X16	1.000	.739
X17	1.000	.811
X18	1.000	.766
X19	1.000	.731
X21	1.000	.640
X23	1.000	.633
X24	1.000	.584

Extraction Method: Principal Component Analysis.



TH VALENNI PERCEPHY SITUM MATEMATIKA Rédién Szén Téardóg Universies Néam Negeti Alembién Meksnyi Kannsii: Ben Sien Mantin No. 36, Hurrig Polong, Gwa. Teirobat) 822400

Dig.
E C
100E
ariar
亞
۲

			-	Coal ver	Oral validi Netavadi izu				
		Initial Eigenvalues	88	Extractic	Extraction Suns of Squared Loadings	dloadings	Rotation	Rotation Sums of Squared Loadings	dloadings
Companent	Total	%ofVariance	Omulative%	Total	%ofVariance	Omulative%	Total	% of Variance	Omulative%
1	4253	20254	20254	4253	20254	20254	2.730	12,398	12,998
2	2.642		32834	2642	12,580	32.834	2.173	10.349	23.346
က	1.871	8.910	41.744	1.871	8.910	41.744	2094	1766	33.317
4	1.425	6.786		1425	6.786	48.530	1919	9.140	42.457
5	1.187			1.187	5.662	54.182	1,616	7.697	50.154
9	1.147	5.464	59.646	1.147	5,464	59.646	1427	6.738	56.947
7	1.108	5275	64.921	1.108	5275	64.921	1425	6.785	63.732
8	1.076	5.123	70.044	1076	5.123	70.044	1336	6.312	70.044
6	83	4288	74342		ΓA				
10	8	3828	78.171		S				
7	8	3362	81.523			7			
12	.615				SI				
13	280	2.780			_A				
4	.512		89.650		M				
15	.462	2201	91.851						
16	382		33,669		NE			7	
17	383	1,724	96.303		EG				
18	13	1.433	28827		à E				
19	240	1.142	97,969		R				
8	230	1094	89066						
73	.197	799.	100,000						
, L		0	-						

Extraction Method: Principal Component Analysis.

Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Component Matrix^a

			C.	omponent M	atrix"			
				Comp	onent			
	1	2	3	4	5	6	7	8
X1	006	.456	525	111	.075	173	153	.157
X2	.265	.615	355	256	.203	134	.099	.149
ХЗ	.163	.472	210	.331	035	430	389	.187
X4	042	.560	.022	.504	036	.139	.193	033
X5	.460	.360	333	.132	.037	.208	.131	337
X7	.323	.396	.447	273	141	067	.197	349
X8	.455	.568	.160	082	199	.082	.088	008
X9	.362	.187	329	248	121	.572	048	.025
X10	.308	164	258	.240	.581	.420	156	.032
X11	.684	161	.210	171	.118	141	278	126
X12	.666	149	.007	323	.230	209	117	166
X13	.668	025	.136	.168	.322	116	207	041
X14	.408	159	.203	.192	418	.251	397	.447
X15	.678	304	034	217	227	.191	.029	.169
X16	.766	294	126	106	106	101	.120	057
X17	.681	198	014	.282	059	273	.309	.235
X18	.506	176	297	.341	169	096	.479	.082
X19	003	.127	.512	ER S170	AS 1.332	048	GER.268	.489
X21	.117	.557	.321	196	.157	.195	.083	.324
X23	.249	.443	.373	.216	243	.000	284	222
X24	.201	056	.446	.447	.301	.159	.061	148

Extraction Method: Principal Component Analysis.

a. 8 components extracted.

Rotated Component Matrix^a

				Compor	nent			7
	1	2	3	4	5	6	7	8
X1	062	060	057	.719	.175	105	02/	-104
X2	.100	.149	.089	.667	.305	060	.278	268
Х3	004	.220	.059	.758	265	.106	-308	.240
X4	519	.437	.155	.215	.025	.306	.053	\. _{.043}

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampas II: Jalan Sullan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

			W 1	8	26	2		
X5	.070	.355	.264	.244	.461	.274	216	224
X7	.255	.719	.003	135	.063	161	.206	221
X8	.096	.632	.154	.207	.283	043	.235	.070
X9	.083	.071	.018	.100	.801	.020	022	.130
X10	.175	321	.032	.062	.336	.731	021	.017
X11	.777	.189	.083	025	.007	.149	.003	.159
X12	.810	.064	.142	.067	.094	.067	.016	098
X13	.570	.172	.204	.131	058	.470	.054	.123
X14	.136	.084	.143	068	.124	.044	.034	.892
X15	.495	022	.394	170	.402	097	.040	.340
X16	.610	.039	.546	057	.210	022	115	.079
X17	.317	.038	.804	.044	-,104	.119	.096	.163
X18	.034	021	.855	.018	.107	.072	126	004
X19	.023	013	.006	094	182	.037	.829	006
X21	060	.324	135	.170	.200	.054	.662	.050
X23	.045	.719	116	.087	080	.134	068	.253
X24	.031	.239	.097	312	189	.607	.116	.028

Extraction Method: Principal Component Analysis.

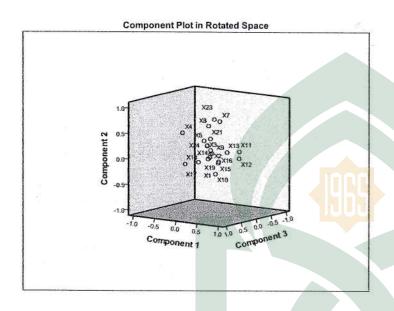
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 15 iterations.

UNIVERSITAS ISLAM NEGERI

Component Transformation Matrix

Component	1	2	3	4	5	6	7	8
1	.669	.301	.522	.106	.294	.224	.047	.198
2	297	.631	174	.595	.171	.015	.276	154
3	.111	.459	214	545	S411	.075	.470	.196
4	450	.114	.368	.047	351	.614	291	.247
5	.231	340	212	.141	090	.650	.354	459
6	281	011	206	388	.758	.328	.060	205
7	301	.022	.625	301	.093	155	.318	542
8	164	413	.193	.272	021	114	.621	540


Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Factor Analysis

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure	of Sampling Adequacy.	.693
Bartlett's Test of Sphericity	Approx. Chi-Square	417.117
	df UNIVERSITA	IS 199 M NEGERI
	Sig.	600

Universitas Islam Negeri Alauddin Makassar Kampus II: Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400 Fakultas Sains dan Teknologi TIM VALIDASI PROGRAM STUDI MATEMATIKA

	X24	.034	.026	.125	024	.068	033	071	.027	146	063	690.	110	.061	.039	990	034	072
	X23	028	.031	-,109	-,163	053	083	.002	013	.161	122	.046	698	705	.041	.063	.013	.017
	X21	760.	164	.093	145	790.	045	11.	048	033	038	1046	15/	A A	1021	1,053	.129	127
	X19	.028	046	620.	700.	.113	017	080	020.	012	600	-07	020	100	100	097	.038	.778
	X18	087	026	.118	770	990'-	.084	064	008	.022	013	.041	001	033	:03	209	.540	.038
	X17	.041	.023	112	061	002	.018	.050	.023	.085	016	011	097	035	126	.403	209	097
	X16	.019	.002	022	.064	018	106	.003	003	055	022	053	030	166	.340	126	030	.120
	X15	080	049	.088	.059	.071	.057	080	107	090	033	035	750.	454	-,166	035	-,033	031
25	X13	.063	021	103	.111	043	075	.010	.008	171	016	107	.535	.057	030	097	001	.020
	X12	019	049	.032	018	059	015	.048	042	.044	234	.465	107	035	053	011	.041	071
ices	X11	004	.051	017	.109	024	016	022	.041	046	.473	234	016	033	022	016	013	600'-
ge Matr	X10	031	.027	031	107	093	.145	.054	078	.683	046	.044	171	090	055	.085	.022	012
Anti-image Matrices	6X	115	047	.072	006	101	037	018	797.	078	.041	042	.008	107	003	.023	008	.070
UI	X8	-,003	044	153	.041	192	213	.515	018	.054	022	.048	.010	080	.003	.050	064	080
	X7	710.	012	.105	084	990.	.592	213	037	.145	016	015	075	.057	106	.018	.084	-,017
	X5	.019	101	.075	138	969.	990.	192	101	093	024	059	043	.071	018	002	066	.113
M	X	.052	.015	139	.626	138	084	.041	006	107	.109	018	1	.059	.064	061	077	700.
	×3	121	109	.622	139	.075	.105	153	.072	031	017	.032	103	.088	022	112	.118	620.
	X2	-,239	.577	-,109	.015	-,101	012	044	047	.027	,051	049	-,021	049	.002	.023	-,026	-,046
	×	899.	239	121	.052	.019	.017	003	-,115	031	+00'-	019	.063	080	.019	.041	087	.028
		×	×	×3	× 4	X5	×	X8	6X	X10	X11	X12	X13	X15	X16	X17	X18	X19
		Anti-image	Covariance															8

9	2
7	ŕ
04111 8991400	1770 (1110)
2	_
Ξ	2
9	2
ė	
2	3
5	:
20	Ē
5	2
_	•
P	-
2	2
ă	2
c	0
2	i
	3
	3
DOT	
A DOI	,
26 Por	100°
10 36 PAT	10. July 1101
1 No 26 DOT	1 NO. 30, MOI
din No 26 Dan	uni 110. 00, mon
iddin No 26 Ron	Turning No. on, mon
landdin No 36 Bon	manani No. 90, non
Manddin No. 36 Pon	Aluquali No. 00, non
an Alanddin No. 36. Ron	un Aluqualli 110. OO, mon
iltan Alanddin No. 36. Ron	HIGH MINNER INC. ON, MAIN
Cultan Alauddin No. 36, Ron	Julian Aluanum No. 50, Mon
an Cultan Alauddin No. 26. Por	un outlan Aluquan 110, oo, non
falan Cultan Alamddin No. 36. Don	unui suilui Aluauulii 110, oo, noi
· Jalan Cultan Alandrifu No. 36. Don	. Julia Julian Albananii 110. Juliani
II · Ialan Cultan Alauddin Vo. 36. Por	II. Julian Julian Albandani No. 50, non
ns II · Ialan Sultan Alanddin No. 36. Romand Dolond. Gows. Telr	es it , juiuii suiium Ainauuiii 110, oo, moi
mnns II - Talan Sultan Alanddin No 36 Bon	ir bes it , Julian Sullan Allandin No. 50, Hol

180.	144	747	.048	.039	.183	036	.102	050	114	.036	205	106	.118	174	.105	820.	120	053
039	699	144	042	.050	170	-,252	083	-,132	.004	7	239	218	a la	X	186	.085	12	220.
959.	039	.081	.056	266	.146	227	.108	071	191	068	P. 1	088	E	SE SE	.035	.044	103	.217
127	.017	072	620.	069	411.	.010	.165	025	-,127	060.	016	10.) <u>+</u> -	.031	Jan 1	.232	174	.058
.129	.013	034	146	047	.203	133	116	.149	121	013	.035	026	.081	003	066	070	-,449	.691
053	.063	-,066	870.	.047	223	122	005	.036	.110	.041	.162	036	026	208	083	345	.721ª	449
.021	.041	.039	.039	.004	048	.140	041	237	800.	900	115	055	132	070	422	.794ª	342	070
.019	102	.061	.146	095	.166	.110	.137	.111	166	182	-,162	070	740	.117	.754ª	422	083	990'-
057	069	110	105	037	179	.192	076	134	.019	.012	283	032	215	.786ª	.117	070	208	003
.046	.046	690.	033	095	090	033	112	029	660.	070	.078	498	.7771 ⁸	215	077	132	026	.081
038	122	063	900'-	760.	031	.200	045	030	046	.068	080	.782ª	498	032	070	055	036	026
033	.161	146	046	.044	047	163	145	.227	.091	107	.529ª	080	.078	283	162	115	.162	.035
048	013	.027	160	070	.104	009	149	055	029	.784ª	107	.068	070	.012	182	900:-	.041	013
-111	.002	071	004	081	270	.072	346	386	.679ª	029	.091	046	660.	.019	166	800.	.110	121
045	083	033	.026	020	.173	138	.112	.634ª	386	055	722.	030	029	134	111	237	.036	.149
790.	053	.068	.030	172	.123	225	₽269°	.112	346	149	145	045	112	920:-	.137	041	005	116
145	163	024	.080	.026	223	.549ª	225	138	.072	009	163	.200	033	.192	.110	.140	122	133
.093	109	.125	188	182	.487ª	223	.123	.173	270	104	047	031	.060	179	.166	048	223	.203
-164	.031	,026	-,384	.709ª	-,182	.026	172	020	081	070	.044	760.	-,095	037	-,095	400.	.047	047
780.	-,028	.034	.612ª	384	-,188	080	.030	.026	004	160	046	900'-	033	.105	.146	660.	820.	146
X21	X23	X24	×	X	×3	× 4	X5	×	X8	6 X	X10	X11	X12	X13	X15	X16	X17	X18
			Anti-image	Correlation														

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

6204	.116	\$	053	120	820.	.105	174	.118	106	205	.036	114	050	.102	036	.183	680.	
.602ª	058	.023	.022	.122	.085	186	116	.082	218	.239	018	.004	132	083	252	170	.050	
ra058	.617ª	177	.217	103	.044	.035	960'-	.083	068	049	068	191	071	.108	227	.146	-,266	950.
7 .023	177	.500ª	.058	174	.232	052	.031	119	014	016	060	127	025	.165	.010	114	690'-	

SITAS ISLAM NEGER

UDDIN A S S A R

a. Measures of Sampling Adequacy(MSA)

Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar


Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Communalities

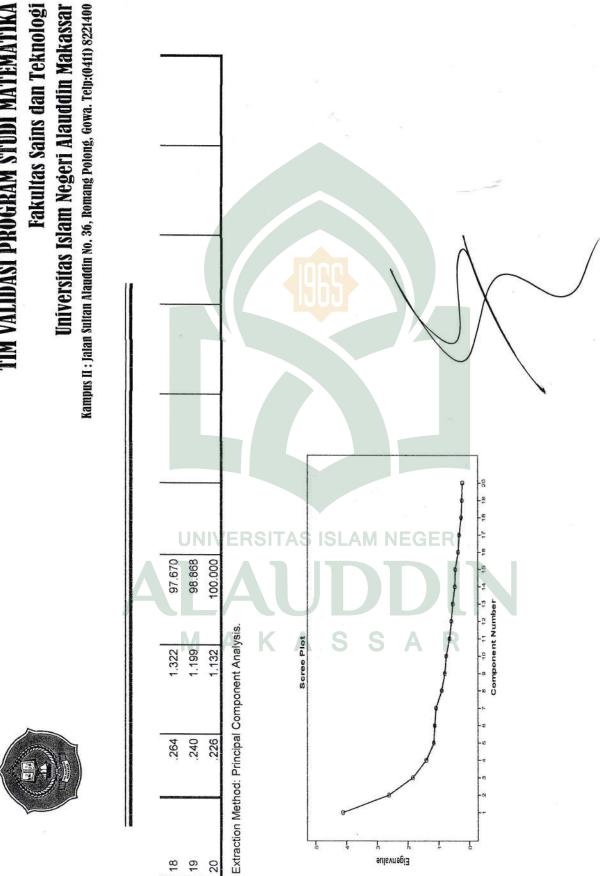
	Initial	Extraction
X1	1.000	.589
X2	1.000	.696
Х3	1.000	.725
X4	1.000	.631
X5	1.000	.587
X7	1.000	.652
X8	1.000	.607
X9	1.000	.635
X10	1.000	.735
X11	1.000	.691
X12	1.000	.667
X13	1.000	.651
X15	1.000	.643
X16	1.000	.746
X17	1.000	.811
X18	1.000	.757
X19	1.000	.733
X21	1.000	.621
X23	1.000	.608
X24	1.000	.573

Extraction Method: Principal

Component Analysis.

KASSAR

Total Variance Explained


17	16	15	14	13	12	1	10	9	8	7	0	O	4	ω	2	_		Component
.328	.363	.458	,473	.540	.586	.646	.758	.805	.905	1.092	1.137	1.167	1.413	1.850	2.624	4.123	Total	
1.642	1.815	2.290	2.363	2.702	2.929	3.232	3.791	4.024	4.524	5.461	5.686	5.837	7.066	9.248	13.121	20.617	% of Variance	Initial Eigenvalues
96.347	94.705	92.891	90.600	88.238	85.535	82.606	79.374	75.583	71.559	67.036	61.574	55.889	50.052	42.986	33.738	20.617	Cumulative %	les
			80				:=:			1.092	1.137	1.167	1.413	1.850	2.624	4.123	Total	Extraction
3										5.461	5.686	5.837	7.066	9.248	13.121	20.617	% of Variance	Extraction Sums of Squared Loadings
			,	8					U	67.036	61.574	55.889	50.052	42.986	33.738	20.617	Cumulative %	ed Loadings
							4			1.438	1.447	1.674	1.914	2.069	2.106	2.759	Total	Rotatic
									N	1	:2	1	k		A		% of \	n Sums
	1	1	//							7.192	7.234	8.372	9.568	10.347	10.528	13.795	% of Variance	of Square
_		1	7		7					67.036	59.844	52.610	44.238	34.670	24.323	13.795	Cumulative %	Rotation Sums of Squared Loadings

TIM VALIDASI PROGRAM STUDI MATEMATIKA

Universitas Islam Negeri Alauddin Makassar Fakultas Sains dan Teknologi

Kampus II ; Jalan Sulian Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Fakultas Sains dan Teknologi

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Teip:(0411) 8221400

			Compor	nent Matrix			
Į.				Component			
	1	2	3	4	5	6	7
X1	.017	.443	536	137	.061	282	.049
X2	.308	.584	334	238	.117	167	.222
Х3	.168	.472	245	.298	113	552	088
X4	030	.566	008	.500	033	.231	.077
X5	.486	.332	321	.145	.039	.295	169
X7	.345	.383	.477	227	259	.157	124
X8	.460	.564	.144	100	142	.160	.024
X9	.362	.177	342	301	.200	.465	095
X10	.313	182	243	.263	.713	.108	071
X11	.675	178	.235	148	.076	242	247
X12	.681	184	.062	270	.093	252	143
X13	.665	043	.154	.203	.244	261	123
X15	.656	316	028	248	074	.195	.087
X16	.768	326	088	087	182	.021	.035
X17	.673	217	.001	.301	228	110	.395
X18	.508	199	286	.349	298	.172	.372
X19	005	.136	.522	134	.271	130	.577
X21	.124	.563	.309	198	.262	.073	.282
X23	.243	.453	.344	ERS.196	S \$184	.007	ER390
X24	.193	053	.450	.493	.263	.120	057

Extraction Method: Principal Component Analysis.

a. 7 components extracted.

			C	omponent			
	1	2	3	4	5	6	7
X1	069	088	073	.716	.195	143	098
X2	.071	.108	.061	.671	.345	109	308
Х3	.009	.231	.082	.755	244	.139	128
X4	537	.404	.158	.223	.088	.307	959
X5	.036	.297	.232	.263	.542	.224	11-174

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II: Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

2 1			a .				_
X7	.209	.712	010	109	.099	155	.234
X8	.093	.611	.157	.212	.300	039	.251
X9	.120	.048	.021	.062	.784	019	008
X10	.186	355	.021	.054	.369	.696	018
X11	.782	.206	.087	014	.002	.171	001
X12	.790	.065	.123	.084	.109	.056	.030
X13	.566	.166	.203	.151	027	.486	.051
X15	.548	.002	.417	203	.345	085	.026
X16	.621	.050	.547	062	.205	022	114
X17	.329	.043	.813	.051	100	.142	.084
X18	.035	043	.848	.027	.134	.062	116
X19	.022	014	.009	087	212	.056	.822
X21	054	.311	127	.159	.189	.058	.664
X23	.053	.738	084	.086	061	.186	083
X24	.015	.223	.098	-,283	143	.632	.116

Extraction Method: Principal Component Analysis.

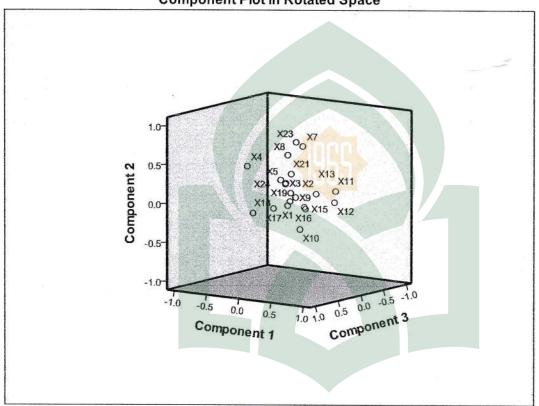
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 15 iterations.

Component Transformation Matrix

Component	1	2 U	UVERS	ITASI	SL/5M	IE6ER	7
1	.679	.300	.522	.138	.321	.226	.057
2	352	.600	-,199	.586	.205	002	.302
3	.157	.478	180	541	434	.142	.461
4	409	.102	.395	.045	328	.691	281
5	.111	411	A422	.057	.290	.650	.362
6	386	.167	.132	580	.684	.021	/.033
7	249	340	.550	.054	078	17/1	.694

Extraction Method: Principal Component Analysis.


Rotation Method: Varimax with Kaiser Normalization.

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Component Plot in Rotated Space

UNIVERSITAS ISLAM NEGERI

Factor Analysis

ALAUDDIN M A K A S S A R

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure	of Sampling Adequacy.	- 1	.717
Bartlett's Test of Sphericity	Approx. Chi-Square	- 1	390.799
	df		171
P.	Sig.		.000

Fakultas Sains dan Teknologi

HIM VALIDANI PRUUKAM NIUDI MALEMALINA

Universitas Islam Negeri Alauddin Makassar

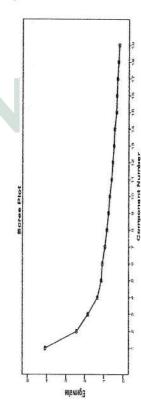
ampus
=
: Jalan Sultan Al
Sultan A
Alauddin No. 36, I
36
Romang Poloi
ng, Gowa.
Telp:(0411) 82214(
8221400

								Anti-ir	Anti-image Matrices	trices		2 I			2				
	×1	X2	×	X5	X7	X8	X9	X10	X11	X12	X13	X15	X16	X17	X18	X19	X21		X23
Anti-image X1	.680	276	.028	.035	.040	037	106	039	007	013	.046	.104	.015	.021	069	.045	.058		053
Covariance X2	276	.592	.002	090	.015	091	042	.019	.053	045	037	031	.001	005	004	033	155		.006
×	.028	.002	.691	144	107	.047	.036	112	.100	012	.080	.070	.054	070	070	.022	146		192
X5	.035	090	144	.606	.053	193	110	089	024	063	035	.062	017	.017	086	.106	.058		039
X7	.040	.015	107	.053	.605	195	036	.169	025	022	078	.032	116	.067	.064	036	067		052
X8	037	091	.047	193	195	.574	018	.040	018	.063	002	054	.006	.002	034	065	098		049
ęx	106	042	.036	110	036	018	.778	084	.052	046	.031	.115	.005	.024	019	.065	060	(0)	013
X10	039	.019	112	089	.169	.040	084	.690	042	.045	178	083	053	.078	.032	006	028		.157
X11	007	.053	.100	024	025	018	.052	042	.467	231	027	038	026	009	013	008	037	.*	123
X12	013	045	012	063	022	.063	046	.045	231	.458	105	041	051	006	.036	076	.042	•	.054
X13	.046	037	.080	035	078	002	.031	178	027	105	.552	.069	040	118	.016	.032	046		084
X15	.104	031	.070	.062	.032	054	115	083	038	041	.069	.468	174	009	057	047	.005		084
X16	.015	.001	.054	017	116	.006	.005	053	026	051	040	174	.337	137	029	123	.024		045
X17	.021	005	070	.017	.067	.002	.024	.078	009	006	118	009	137	.448	212	090	1.038		.032
X18	-,069	004	070	086	.064	034	019	.032	013	.036	.016	057	029	212	.565	.023/	12		3
X19	.045	033	.022	.106	036	065	.065	006	008	076	.032	047	.123	090	.023	.786	1	11	2036
X21	.058	- 155	146	.058	067	098	060	028	037	.042	046	.005	.024	038	.118			,	022
X23	053	.006	192	039	052	049	013	.157	123	.054	084	084	.045	.032	.043	1989	02	e e	.703
X24	.062	.052	.002	.055	060	045	.015	145	062	.065	097	.046	.045	048	063	093	.066		132

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

2	9	7		œ	00	on.	O.	8	6	0	(0	· ·	01	10	6			_e
.085	920.	.002	.081	088	068	.019	199	103	.109	149	920.	.088	082	-,095	-119	.092	179	.599ª
077	600.	276	059	080	078	018	.225	214	.095	134	147	.093	.057	890.	8	032	,614 ^ª	179
.086	246	215	160.	106	-,158	083	041	067	920.	075	800.	.050	820	192	F.	1	032	/260.
.062	048	.030	.153	052	097	.083	009	014	127	.049	077	.238	-:151	\$.499	-198	18	1119
112	007	-111	147	.110	059	028	.051	026	.071	.028	111	067	422	.738ª	.034	.192	.068	095
950.	009	126	.032	.129	.004	.040	.140	020	013	237	019	352	.751ª	422	151	070	.057	082
.031	.002	.112	038	256	.014	.010	-,110	067	130	093	437	.785ª	352	067	.238	.050	.093	.088
.184	058	.124	.116	190:	103	191	147	081	089	.136	.771ª	437	019	111	077	800.	147	920.
370.	064	.130	061	135	003	.048	289	053	209	.801ª	.136	093	237	.028	.049	075	134	149
023	086	021	120	041	.123	078	180.	500	.771ª	209	089	130	013	.071	127	920.	360.	.109
013	.101	.176	045	048	034	980.	073	.786ª	500	053	081	067	020	026	014	067	214	103
057	.030	162	138	.262	.064	-,115	.529ª	073	.081	289	147	110	.140	.051	009	041	.225	199
145	061	.049	161	052	027	.775ª	115	980.	078	.048	191	.010	.040	028	.083	083	018	.019
060	156	.075	328	330	.735ª	027	.064	034	.123	003	103	410.	.004	059	097	158	078	068
290.	.026	166	.088	.655ª	330	052	.262	048	041	135	.061	256	.129	.110	052	-,106	080	088
.055	-,151	223	.717ª	.088	328	161	-,138	045	-,120	061	.116	038	.032	147	.153	.091	059	.081
.041	.003	.529ª	223	166	.075	.049	162	.176	021	.130	.124	.112	126	11	.030	215	276	.002
435	.681ª	.003	-,151	.026	-,156	061	.030	101.	086	064	-,058	.002	009	007	048	246	600.	920.
.571	435	.041	.055	.062	060	145	057	013	023	.075	.184	.031	.039	112	.062	980.	077	.085
×	×	× 4	X5	×	8X	6X	X10	X11	X12	X13	X15	X16	X17	X18	X19	X21	X23	X24
Anti-image	Correlation				<u></u>	2000				****	- 100	702 A	- Ti	ereal				

a. Measures of Sampling Adequacy(MSA)



Faluntes Svárs dan Teknologi Universites Islam Negeri Alauntán Malkassar THE VALLMENT PROGRAM STUDY MATHEMATIK

Kanpus II ; biem Sufem Akantifin No. 36, Amrang Polong, Gowa, Telpa(041) 822400

		And the second s	A CONTRACTOR OF THE PERSON OF	Total Vari	Total Variance Explained				
Component		Initial Eigenvalues	88	Extractic	Extraction Sums of Squared Loadings	sd[oadings	Rotatio	Rotation Surs of Squared Loadings	dLoadings
	Total	%ofVariance	Ornutative%	Total	%ofVariance	Omtative%	Total	%ofVariance	Ombative%
-	4.088	71512	21.517	4.088	21,517	21.517	3.118	16.410	16.410
2	2.452	12,903	34.420	2.462	12903	34.420	2.136	11241	27.661
3	1.855	9.765	44.185	1866	9.785	44.185	2094	11,020	38.671
4	1380	7.157	51.342	1.360	7.157	51.342	1829	9629	48.239
5	1.160	6.104	57.447	1.160	6.104	57.447	1,425	7.500	55,800
9	1.10	5.736	63.242	1.101	5.736	63242	1,414	7.442	63242
7	88	5084	68.326		IT				
80	.883	4.544	72871		Ά				
6	.779	4.100	76.971		S				
10	715	3.766	80.736		18				6
F	8	3267	84.004		SL				5
12	83	2966	86.959		.A				
13	89.	2621	89.580		M				
4	84.	2,414	91.994		N			0	
15	8 8	1.915	93,939		IE				
16	350	1.845	96.753		G				
17	.313	1.645	97.398		E				
18	289	1.416	98.814		R		1	(
19	225	1.186	100,000	-			/	\	

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

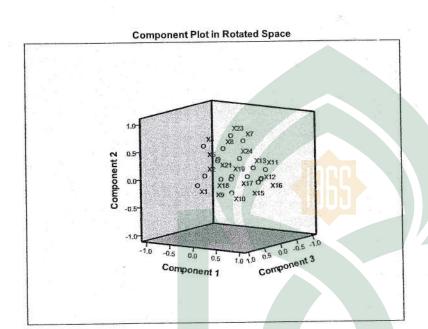
Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Component Matrix^a

			Comp	onent		
	1	2	3	4	5	6
X1	030	.397	574	105	.100	.121
X2	.259	.581	414	190	.144	.240
X4	031	.514	.049	.551	096	016
X5	.469	.349	363	.271	034	225
X7	.354	.432	.432	198	276	147
X8	.420	.603	.042	050	154	.037
X9	.339	.232	449	133	.118	186
X10	.315	190	224	.313	.685	151
X11	.689	137	.246	215	.102	196
X12	.693	146	.066	319	.120	120
X13	.668	045	.193	.124	.276	085
X15	.675	258	051	218	094	.032
X16	.781	304	068	109	173	.017
X17	.669	221	.015	.236	186	.440
X18	.511	193	287	.403	317	.380
X19	.000	.196	.470	TA162	LA 1.315	EG E.587
X21	.111	.619	.237	152	.250	.211
X23	.227	.469	.328	.178	203	331
X24	.207	014	.451	.506	.242	016

Extraction Method: Principal Component Analysis.

a. 6 components extracted.


Rotated Component Matrix^a

			Compor	nent		
	1	2	3	4	5	6
X1	184	072	.694	.001	.002	059
X2	.032	.131	.773	.079	.258	034
X4	449	.526	.111	.185	.005	.235

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Factor Analysis

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure	of Sampling Adequacy.	AM NEGER
Bartlett's Test of Sphericity	Approx. Chi-Square	376.851
	df	153
	Sig.	.000

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Siltan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

X5	.116	.374	.488	.228	287	.272
X7	.309	.675	027	068	.184	213
X8	.158	.583	.380	.134	.195	075
X9	.242	.062	.574	028	184	.101
X10	.194	247	.181	.004	078	.799
X11	.761	.189	064	.026	.038	.168
X12	.782	.056	.097	.048	.035	.099
X13	.534	.205	007	.170	.104	.466
X15	.693	026	.068	.305	056	028
X16	.731	.024	.039	.439	144	.011
X17	.380	.029	043	.780	.124	.098
X18	.127	020	.100	.859	142	.065
X19	.001	010	106	.017	.847	.019
X21	013	.362	.287	153	.585	.052
X23	.037	.740	034	065	043	.068
X24	004	.273	361	.152	.172	.551

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 8 iterations.

UNIVERSITAS ISLAM NEGERI

Component Transformation Matrix

Component	1	2	3	4	5	6
1	.780	.294	.214	.445	.015	.248
2	301	.682	.559	174	.315	049
3	.135	.411	747	182	.470	.029
4	495	.229	207	.487	238	605
5	.071	349	.188	402	.382	.728
6	181	325	.073	.583	.691	- 198

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

					М			Anti-im	Anti-image Matrices	atrices									
		×	X2	X4	X5	X7	X8	6X	X10	X11	X12	X13	X15	X16	X17	X18	X21	X23	X24
Anti-image X	×	.682	275	.027	.030	.042	034	-,111	039	007	008	.044	.108	800°	.027	071	690'	056	.068
Covariance	×2	275	.593	.003	088	.014	095	L.039	.019	.053	049	035	033	900.	-,009	003	167	800	.049
*	X4	.027	.003	.691	151	106	.050	.034	111	.101	010	620.	.072	.054	690	070	148	194	.004
*	X5	030	088	151	.620	690	191	123	091	023	055	040	070.	037	.030	091	.082	位.04	.070
*	×	.042	410.	106	650.	909.	200	033	.170	026	025	077	.031	117	.065	.065	077	051	065
*	X8	034	095	.050	191	200	.580	013	.040	019	.058	.001	058	.018	900	032	115	047	054
*	6X	111	039	.034	123	033	013	.783	084	.053	041	.029	113	-,005	.032	021	050	016	.023
*	X10	039	.019	14	091	.170	.040	084	069	042	.046	178	084	055	620.	.032	030	.157	-148
*	X11	007	.053	.101	023	026	019	.053	042	.467	236	026	039	027	010	013	040	123	064
×	X12	008	049	010	055	025	.058	041	.046	236	.465	104	047	042	-,015	.039	.030	.058	.057
×	X13	.044	035	.079	040	077	.000	.029	178	026	104	.553	.072	048	-,117	.015	042	086	095
×	X15	.108	033	.072	020.	.031	058	113	084	039	047	.072	.471	177	014	056	007	183	7.041
×	X16	800.	900.	.054	037	-,117	.018	005	055	027	042	048	-,177	.357	-,133	035	1.051	E	140
*	X17	.027	009	069	.030	.065	900	.032	620.	010	015	-,117	014	133	.458	215	001	188/	061
*	X18	071	003	070	091	.065	032	021	.032	013	.039	.015	-,056	035	215	.566	1/8	.042	061
×	X21	690.	167	148	.082	077	-,115	050	030	040	.030	042	004	.051	058	.128	769.	-010	.052
	X23	-,056	800.	194	045	051	047	016	.157	123	.058	086	083	.042	.037	.042	016	.705	1.130

Kampus II : Jaian Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

		-									1000		The second second	100 miles 100 mi	The state of the s	100000000000000000000000000000000000000	
.049		004	.070	065	054	.023	148	064	.057	095	.041	.064	061	061	.052	130	.783
433	(9)	040	.046	990.	054	-,151	056	012	015	.072	.190	.017	.049	114	.101	080	.093
.678ª		.005	146	.023	162	057	.029	.100	093	062	062	.013	-,017	005	260	.012	.071
.005		.527ª	230	164	.078	.047	161	177	017	.128	.127	.108	-,123	112	214	278	900
146		230	.711ª	760.	318	176	139	044	103	069	.129	078	.057	154	.125	068	.101
.023		164	760.	.649ª	338	048	.262	048	048	133	750.	251	.123	.112	118	078	095
162	300	.078	318	338	.733ª	-,019	.064	036	.112	.002	112	.039	011	056	181	073	080
057	2222	.047	176	048	019	.778ª	114	780.	068	.044	185	010	.053	031	068	022	.029
.029		161	139	.262	.064	-114	.526ª	074	.081	289	148	-111	.140	.051	043	.226	202
.100		.177	044	048	036	780.	074	.782ª	506	052	082	065	022	026	071	214	106
093		017	-103	048	.112	068	.081	-,506	.782ª	205	100	104	033	920.	.052	.102	.095
062		.128	690	133	.002	.044	289	052	205	.804ª	.141	108	233	.026	067	137	144
062	227	.127	.129	.057	112	185	148	082	100	141	.772ª	432	031	109	007	143	790.
.013	201	.108	078	251	.039	010	-111	065	104	108	432	.804ª	-,329	078	.102	.084	.121
017		123	750.	.123	011	.053	140	022	033	233	031	329	.762	422	5	188	102
005		112	154	.112	056	031	.051	026	920.	.026	109	078	422	.732ª	103	A TOP TO SERVICE AND A SERVICE	091
260		214	.125	118	181	068	043	071	.052	067	007	.102	103	203	8029	023	.070
.012	3000	278	068	078	073	022	.226	214	.102	137	143	.084	.065	. 066	083	.615ª	174
.071		900	.101	-,095	080	.029	202	106	.095	144	.067	.121	102	091	.070	174	.588ª

a. Measures of Sampling Adequacy(MSA)

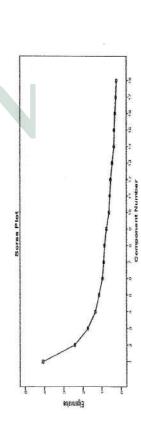
Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

Communalities

	Initial	Extraction
X1	1.000	.518
X2	1.000	.628
X4	1.000	.573
X5	1.000	.514
X7	1.000	.637
X8	1.000	.568
X9	1.000	.411
X10	1.000	.775
X11	1.000	.640
X12	1.000	.633
X13	1.000	.590
X15	1.000	.584
X16	1.000	.740
X17	1.000	.699
X18	1.000	.788
X21	1.000	.450
X23	1.000	.462
X24	1.000	.550

Extraction Method: Principal Component Analysis.

AUDDIN



TIM VALENSI PROGRAM STUDI MATHMITEKA Ramber Sairs cem Teknologi Universies Isem Neget Alautien Makensar

KATŲTAS II; ĮXIAN SUIKAN AKATUTINNO, 36, PATIATŲ POKATŲ, GAMA, TEIPAO 411) 8224,00

Œ	i
Œ	i
8	į
5	į
5	l
2	l
al Va	
al Va	
tal Va	
otal Va	
otal Va	
otal Va	
rotal Va	
Total Va	A STATE OF TAXABLE PARTY.
Total Va	The second of the second
Total Va	A STATE OF THE PERSON NAMED IN
Total Va	A STREET, SQUARE, SQUA
Total Va	A STATE OF THE PERSON NAMED IN
Total Va	A STATE OF THE PERSON NAMED IN
Total Va	A STATE OF THE PERSON NAMED IN COLUMN SAFETY
Total Va	A STATUTE OF THE PERSON NAMED IN COLUMN 1
Total Va	A STATE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN
Total Va	A STATE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN
Total Va	A STATE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN

Component Total Initial Elgenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings 1 4,088 22,712 4,088 22,712 4,088 7,7178 17,178 17,178 2 2,431 1,3507 36,220 2,231 1,739 9,8178 17,178 17,178 4 1,1743 9,685 45,904 1,743 9,82712 2,233 17,178 17,178 5 1,1743 9,685 45,904 1,743 9,820 2,2712 3,092 17,178 17,178 6 1,1748 6,876 45,904 1,743 9,376 1,433 7,939 59,736 7 901 6,378 5,3407 1,148 9,376 1,433 7,939 59,736 8 6,587 4,789 7,939 8,943 1,148 9,378 1,433 7,939 8,94,736 11 5,68 2,548 95,431 1,433 1,433 1,433 1,433 1,433	Total 10, of Variance Cumulative % Total % of V		***************************************	AND DESCRIPTION OF THE PERSON NAMED IN	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COL	Total Var	Total Variance Explained				
Total % of Variance Cumulative % Total % of Variance Cumulative % 4.088 22.712 22.712 3.092 17.178 2.431 13.507 36.220 2.431 13.607 36.220 17.178 1.743 9.685 45.904 1.743 9.685 45.904 1.743 9.685 12.739 1.361 7.503 53.407 1.351 7.503 53.407 11.503 11.739	umulative % Total % of Variance Cumulative % Total % of Variance Cumulative % 22.712 4.088 22.712 3.092 17.178 36.220 2.431 43.607 36.220 2.293 17.178 45.804 1.743 45.904 2.071 11.503 53.407 1.351 7.503 53.407 1.873 10.407 59.786 1.148 6.378 59.786 1.433 7.959 79.139 82.803 88.855 91.403 95.431 93.434 95.431 93.434 98.678	Component		Initial Eigenvalu	les	Extractic	on Sums of Squar	ed Loadings	Rotatio	n Sums of Square	d Loadings
4,088 22.712 4,088 22.712 3,092 17,178 2,431 13,507 36,220 2,431 13,507 36,220 2,233 17,178 1,743 9,685 45,904 1,743 9,685 45,904 2,071 11,503 1,148 6,378 53,407 1,148 6,378 53,407 1,433 7,959 1,148 6,378 65,153 1,148 6,378 59,786 1,433 7,959 1,148 6,378 7,187 1,148 6,378 59,786 1,433 7,959 1,148 6,378 7,187 7,920 7,959 1,148 7,959 1,148 6,378 7,189 7,920 7,959 1,433 7,959 1,679 7,189 7,930 7,939 7,949 7,949 7,949 1,63 3,244 3,221 88,855 7,188 88,855 85,343 85,343 86,343 86,343 86,343 86,343 86,343 86,343 86,343 86,343 86,343 86,343 86,343 86,343 </th <th>22.712 4.088 22.712 22.712 3.092 17.178 36.220 2.293 12.739 45.904 1.743 9.685 45.904 2.071 11.503 17.178 59.786 1.433 7.959 65.153 65.153 69.786 1.433 7.959 7.959 82.803 85.834 88.855 91.403 93.434 95.431 97.168 98.678 88.678 98.678</th> <th></th> <th>Total</th> <th>% of Variance</th> <th>Cumulative %</th> <th>Total</th> <th>% of Variance</th> <th>Cumulative %</th> <th>Total</th> <th>% of Variance</th> <th>Cumulative %</th>	22.712 4.088 22.712 22.712 3.092 17.178 36.220 2.293 12.739 45.904 1.743 9.685 45.904 2.071 11.503 17.178 59.786 1.433 7.959 65.153 65.153 69.786 1.433 7.959 7.959 82.803 85.834 88.855 91.403 93.434 95.431 97.168 98.678 88.678 98.678		Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
2,431 13,507 36,220 2,431 143,607 36,220 2,293 12,739 1,743 9,685 45,904 1,743 9,685 45,904 1,733 11,503 1,351 7,503 53,407 1,351 7,503 53,407 1,1503 1,148 6,378 53,407 1,148 6,378 53,407 1,433 7,959 901 5,004 70,157 74,920 70,157 74,920 74,920 74,920 74,920 74,920 74,920 74,920 74,920 74,920 74,920 74,933 76,934 76	36.220 2.431 13.507 36.220 2.293 12.739 45.904 1.743 9.685 45.904 2.071 11.503 10.407 10.0000 1 10.0000 1 10.00		4.088	00.00	22.712	4.088		1537	3.092	17.178	17,178
1.743 9.685 45.904 1.743 9.685 45.904 2.071 11.503 1.361 7.503 53.407 1.351 7.503 53.407 1.433 7.959 1.148 6.378 59.786 1.148 65.153 7.959 7.959 .966 5.367 65.153 7.4920 7.959 7.959 7.959 .975 4.218 7.9139 8.865 8.865 8.865 8.865 8.865 8.865 8.865 8.865 9.434 9.403 9.434 9.403 9.434 9.434 9.434 9.434 9.434 9.5431 9	45.904 1.743 9.885 45.904 2.071 11.503 53.407 1.351 7.503 53.407 1.873 10.407 59.786 1.148 6.378 59.786 1.433 7.959 70.157 74.920 74.920 77.959 77.959 82.603 85.834 88.855 91.403 88.855 95.431 97.168 98.678 100.000 100.000 100.000	2	2.431	13.507	36.220	2.431	13.507	36.220	2.293	12.739	29.917
1.351 7.503 53.407 1.351 7.603 53.407 1.873 10.407 1.148 6.378 59.786 1.148 6.378 59.786 1.433 7.959 .966 5.387 65.153 74.920 1.148 6.378 59.786 1.433 7.959 .967 4.703 70.157 4.7920 <td< td=""><td>59.786 65.153 70.157 74.920 79.139 82.603 88.855 91.403 93.434 95.431 97.168 98.678</td><td>₆</td><td>1.743</td><td>9.685</td><td>45.904</td><td>1.743</td><td></td><td></td><td>2.071</td><td>11.503</td><td>41.420</td></td<>	59.786 65.153 70.157 74.920 79.139 82.603 88.855 91.403 93.434 95.431 97.168 98.678	₆	1.743	9.685	45.904	1.743			2.071	11.503	41.420
1.148 6.378 59.786 1.148 59.78 1.433 7.959	59.786 1.433 7.959 65.153 7.959 7.959 7.959 65.153 7.959 7.959 7.959 7.959 7.959 82.803 85.834 88.855 91.403 93.434 95.431 97.168 98.678	4	1.351		53.407	1,351	7,503	1000	1.873	10.407	51,826
.966 5.367 65.153 .901 5.004 70.157 .857 4.763 74.920 .759 4.219 79.139 .623 3.464 82.603 .582 3.232 85.834 .544 3.021 88.855 .459 2.548 91.403 .366 2.031 93.434 .360 1.998 95.431 .313 1.737 97.168 .272 1.510 98.678	85.153 70.157 74.920 79.139 82.803 85.834 88.855 91.403 93.434 95.431 97.168 98.678	5	1.148		59.786	1.148	6,378	one	1.433	7.959	59.786
.901 5.004 70.157 A .763	70.157 74.920 79.139 82.803 85.834 88.855 93.434 95.431 97.168 98.678	9	996	5.367	65,153		RS				
. 567 4.763 74.920 A . 563 3.464 82.603 . 582 3.232 85.834 D . 584 3.021 88.855 . 544 3.021 88.855 . 548 91.403 . 366 2.031 93.434 . 366 2.031 93.434 . 367 1.510 98.678 . 313 1.737 97.168 . 272 1.510 98.678 . 238 1.322 100.000 . 259 4.740 . 272 1.510 98.678 . 238 1.322 100.000 . 259 4.210 98.678 . 250 1.510 98.678 . 250 1.510 98.678 . 250 1.510 98.678 . 250 1.510 98.678 . 250 1.510 98.678 . 250 1.510 98.678 . 250 1.510 98.678 . 250 1.5	82.803 85.834 88.855 93.434 95.431 97.168 98.678	7	106.	5.004	70,157						
. 523	82.803 85.834 86.834 89.434 95.431 97.168 98.678	8	.857	4.763	74,920		A				
.582 3.484 82.803 .582 3.232 85.834 .544 3.021 88.855 .459 2.548 91.403 .366 2.031 93.434 .360 1.998 95.434 .313 1.737 97.168 .272 1.510 98.678	85.834 85.834 88.865 91.403 95.431 97.168 98.678	6	759	4.219	79.139		S				
.582 3.232 85.834 P P P S	85.834 88.855 91.403 93.434 95.431 97.168 98.678	10	.623	3.464	82,603		K				6
. 544 3.021 88.855 . 459 2.548 91.403 . 366 2.031 93.434 . 360 1.998 95.431 . 313 1.737 97.168 . 272 1.510 98.678 . 238 1.322 100.000	93.434 95.431 97.168 98.678	-	.582	3.232	85.834		SL				5
.366 2.031 93.434 .360 1.998 95.431 .313 1.737 97.168 .272 1.510 98.678 .238 1.322 100.000	93.434 95.431 97.168 98.678	12	.544	3.021	88.855		.A				
.366 2.031 93.434 .360 1.998 95.431 .313 1.737 97.168 .272 1.510 98.678 .238 1.322 100.000	93.434 95.431 97.168 98.678	13	.459	2.548	91.403		M				
.313 1.737 95.431 .272 1.510 98.678 .238 1.322 100.000	95.431 97.168 98.678 100.000	14	.366	2.031	93.434						
.272 1.510 98.678 .238 1.322 100.000	97.168 98.678 100.000	15	360	1.998	95.431		IE				
.238 1.322 100.000	98.678	16	.313	1.737	97.168		G				
.238 1.322		17	.272	1.510	98.678		E				
	Extraction Method: Principal Component Analysis	18	.238	1.322	100.000	The second second	R			1	

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

		Compone	ent Matrix ^a		
			Component		
	1	2	3	4	5
X1	030	.434	.570	053	.032
X2	.259	.600	.427	133	.034
X4	031	.517	142	.525	092
X5	.469	.386	.276	.260	.042
X7	.354	.406	495	271	166
X8	.420	.598	084	066	151
X9	.339	.265	.430	112	.169
X10	.315	176	.248	.365	.670
X11	.689	156	228	237	.182
X12	.693	155	024	317	.165
X13	.668	056	200	.117	.296
X15	.675	257	.091	210	099
X16	.781	292	.068	119	159
X17	.669	228	.031	.269	355
X18	.511	173	.294	.438	468
X21		.589	216	VER.133	AS .163
X23	.227	.457	436	.098	046
X24	.207	047	460	.492	.224

Extraction Method: Principal Component Analysis.

a. 5 components extracted.

Rotated Component Matrix^a

		С	omponent		
	1	2	3	4	5
X1	185	043	.688	017	088
X2	.033	.248	.750	.015	057
X4	472	.468	.106	.233	.256
X5	.080	.245	.513	.328	.277

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

		1			-
X7	.286	.721	057	041	173
X8	.136	.629	.359	.145	059
X9	.220	.006	.596	.027	.087
X10	.198	282	.219	011	.780
X11	.750	.198	052	.042	.183
X12	.776	.079	.111	.050	.102
X13	.534	.232	003	.148	.479
X15	.692	032	.083	.311	030
X16	.732	003	.049	.450	.016
X17	.397	.063	044	.726	.096
X18	.132	085	.116	.864	.057
X21	005	.567	.240	260	.057
X23	004	.669	037	.033	.110
X24	006	.274	355	.141	.573

Extraction Method: Principal Component Analysis.

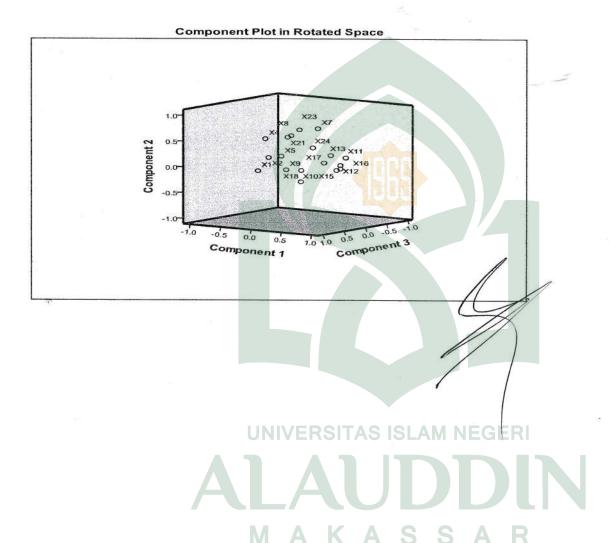
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 7 iterations.

Component Transformation Matrix TAS ISLAM NEGERI

Component	1	2	3	4	5
1	.769	.291	.225	.455	.257
2	342	.727	.575	150	039
3	080	605	.762	.196	091
4	512	.004	119	.559	.641(
5	.153	145	.154	647	.716

Extraction Method: Principal Component Analysis.


Rotation Method: Varimax with Kaiser Normalization.

Fakultas Sains dan Teknologi

Universitas Islam Negeri Alauddin Makassar

Kampus II : Jalan Sultan Alauddin No. 36, Romang Polong, Gowa. Telp:(0411) 8221400

LAMPIRAN-LAMPIRAN

A. LAMPIRAN HASIL

B. VALIDASI PROGRAM

C. PERSURATAN

UNIVERSITAS ISLAM NEGERI

C. PERSURATAN

1.SURAT KETERANGAN VALIDASI PROGRAM

2. SURAT IZIN PENELITIAN

3.SURAT KETERANGAN PENELITIAN

UNIVERSITAS ISLAM NEGERI

ALAUDDIN M A K A S S A R

KEMENTERIAN AGAMA

UNIVERSITAS ISLAM NEGERI (UIN) ALAUDDIN MAKASSAR*

FAKULTAS SAINS & TEKNOLOGI

Kampus I: Jl. Sultan Alauddin No.63 Telp. 864924 (Fax 864923) Kampus II: Jl. Sultan Alauddin No.36 Telp. 5622375-424835 (Fax 424836)

Nomor: ST.VI.1/PP.009/3925/2014

Makassar, 🚁 Juni 2014

Sifat : Penting

Lamp :-

Hal

: Izin Penelitian

Untuk Menyusun Skripsi

Kepada Yth

Ketua Jurusan Matematika

Fak.Sains & Teknologi UIN Alauddin Makassar

Di-

Makassar

Assalamu Alaikum Wr. Wb.

Dengan hormat kami sampaikan, bahwa mahasiswa UIN Alauddin Makassar yang tersebut namanya di bawah ini:

Nama

: Fifi Elpira

MIM

: 60600110019

Semester

: VIII

Fakultas

: Sains & Teknologi UIN Alauddin Makassar

Jurusan

: Matematika

Pembimbina

: 1. Ermawati, S.Pd., M.Si.

2. Wahidah Alwi, S.Si., M.Si.

Bermaksud melakukan penelitian dalam rangka penyusunan Skripsi berjudul "Penerapan Analisis Faktor untuk Menentukan Variabel yang Mempengaruhi Mahasiswa dalam Memilih Jurusan Matematika Fakultas Sains & Teknologi Universitas Islam Negeri Alauddin Makassar" sebagai salah satu syarat penyelesaian Studi akhir Sarjana/S.1.

Untuk maksud tersebut kami mengharapkan kiranya kepada mahasiswa yang bersangkutan diberi izin untuk penelitian di **Jurusan Matematika Fak.Saintek.**

Demikian harapan kami, atas perhatian dan kerjasamanya kami ucapkan terima kasih

harnmad Khalifah Mustami, M.Pd

0412 200003 1 001

Tembusan:

1. Ketua Prodi/Jurusan Teknik Matematika Fak, Sainstek UIN Alauddin

PEDOMAN WAWANCARA

Assalamu Alaikum wr.wb

Saya Fifi Elpira, Mahasiswa Program Strata satu (S1) Universitas Negeri Alauddin Makassar, saat ini sedang melakukan Islam penelitian tentang pengaruh Mahasiswa Memilih jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar dengan judul skripsi "Penerapan Analisis Faktor untuk menentukan faktor-faktor yang berpengaruh terhadap mahasiswa dalam memilih Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar, Saya mohon kesediaannya untuk meluangkan waktu untuk wawancara secara lengkap dan tepat sesuai dengan Pedoman Wawancra. Pedoman Wawancara ini berisi alasan-alasan mahahasiswa dahulu memilih Jurusan Matematika. Kerahasiaan identitas dari hasil penelitian ini terjamin dan hanya dipergunakan untuk kepentingan akademik dan sumbangan pemikiran bagi peningkatan kualitas pada Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar. Atas kerjasama dan Bantuannya saya ucapkan Banyak terima kasih.

UNIVERSITAS ISLAM NEGERI

Nama Informan:

MAKASSAR

Petunjuk Pewawancara

Dibawah ini terdapat pernyataan-pernyataan yang berkaitan dengan perasaan anda dahulu sehingga anda memilih Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar. Skala pengukuran yang digunakan adalah skala likert dengan empat angka yang mewakili pendapat anda yaitu:

Keterangan: 4 = Sangat Setuju, 3 = Setuju, 2 = Tidak Setuju, 1 = Sangat Tidak Setuju

Terhadap pernyataan – pernyataan tersebut anda dimohon kesediannya untuk melakukan wawancara dengan cara menjawab pernyataan-pernyataan yang terdapat dalam Pedoman Wawancara.

Tahapan-tahapan yang harus diperhatikan oleh Pewawancara adalah:

- 1. Meminta kesediaan Informan atau narasumber.
- 2. Mengajukan Pernyataan yang sesuai dengan penelitian.
- 3. Menggunakan bahasa-bahasa yang mudah dimengerti oleh Informan.
- 4. Pernyataan yang diajukan sesuai dengan Pedoman Penelitian.
- 5. Melakukan wawancara secara singkat dan tepat.

MAKASSAR

Pedoman wawancara

- bagaimana menurut anda aspek promosi Jurusan Matematika, apakah anda setuju Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar dapat diketahui melalui iklan dan media massa. ?
- 2. Bagaimana menurut anda Promosi dikemas secara kreatif dan menarik dengan berisi informasi lengkap tentang jurusan matematika?
- 3. bagaimana menurut anda Sosialisasi Jurusan Matematika yang dilakukan disekolahsekolah dapat menarik perhatian anda sehingga anda tertarik memilih jurusan Matematika?
- 4. apakah anda setuju kalau Memilih jurusan Matematika karena saran dari Alumni?
- apakah anda memilih Jurusan matematika karena Jurusan Matematika Universitas Islam Negeri Alauddin Makassar yang terakreditasi Ban-PT?
- 6. : Apakah dahulu anda sebelum kuliah anda, melihat gedung perkuliahan sehingga anda memilih jurusan matematika karena gedung yang berdesain Eropa dan mediterania?
- 7. apakah dalam memilih jurusan anda melihat dan mempertimbangkan keluasan, kenyamanan, keasrian, serta kebersihan Gedung perkuliahan?
- 8. : Anda memilih jurusan Matematika karena Lokasi perkuliahan Jurusan Matematika yang mudah dijangkau ?
- 9. Anda memilih jurusan Matematika karena Lokasi perkuliahan Jurusan Matematika yang mudah dijangkau?
 UNIVERSITAS ISLAM NEGERI
- 10. Anda memilih Jurusan Matematika karena lokasi perkuliahan Jurusan Matematika yang jauh dari keramaian kota ?
- 11. Dalam memilih Jurusan, Anda melihat dan mempertimbangkan fasilitasnya yang baik, seperti memiliki Lab computer dan Perpustakaan Jurusan.
- 12. ketika memilih jurusan, anda tidak mempertimbangkan kemampuan, keahlian, serta kedisiplinan Pengajar ?
- 13. Anda memilih Jurusan Matematika karena senang belajar Matematika.
- 14. Apakah karena ilmu matematika yang dapat diaplikasikan diberbagai bidang ilmu pengetahuan dapat menarik perhatian anda sehingga anda memilih Jurusan Matematika?

- 15. Anda memilih jurusan Matematika karena Studi Matematika Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar yang diintegrasikan dengan ilmu Teknologi dan Agama Islam?
- 16. Anda memilih jurusan Matematika karena Studi Matematika Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar yang diintegrasikan dengan ilmu Teknologi dan Agama Islam ?
- 17. Apakah karena Prospek dunia kerja program Studi Matematika yang memiliki peluang kerja yang baik sehingga anda memilih Jurusan matemtika?
- 18. Lulusan Jurusan Matematika yang dapat diterima diberbagai tempat kerja sehingga anda memilih Jurusan Matematika ?.
- 19. Anda Memilih Jurusan Matematika karena ajakan teman dan kerabat?
- 20. Memilih Jurusan Matematika karena saran Orang Tua?
- 21. Memilih Jurusan Matematika karena Latar Belakang Orang Tua dari lulusan sarjana Sains?
- 22. Anda Memilih Jurusan Matematika Fakultas Sains dan Teknologi karena tidak lulus dijurusan lain?
- 23. Apakah Karena Biaya pendidikan yang murah sehingga anda memilih Jurusan Matematika?
- 24. Apakah karena Jarang terjadi tindakan kriminal seperti tauran sehingga anda memilih Jurusan matematika?

UNIVERSITAS ISLAM NEGERI

Tehnik dan hasil wawancara:

Keterangan:

P : Penulis

I: Informan

P : Assalamualaikum!

I : Waalaikummusalam.

P : Apakah anda mahasiswa Jurusan Matematika?

I : iya, Ada apa ya?

- P : Maaf ya kalau saya mengganggu, ini saya ingin melakukan wawancara dengan saudara/(i) terkait dengan penelitian saya. (sambil memperlihatkan pedoman penelitian). Bagaimana apakah anda bersedia?
- I : Kenapa harus saya ?
- P : iya, karena saudara/(i) adalah mahasiswa jurusan matematika, dan kebetulan penelitian saya ini berkaitan dengan mahasiswa Jurusan Matematika. Dan sampel yang saya gunakan adalah sebagian Mahasiswa Jurusan Matematika.
- I : Ooooo...... Begitu ya..? Baiiklah.
- P :Baiklah ini adalah lembar pernyataan,..(memperlihatkan lembar pernyataan), silahkan anda menyilang keterangan yang telah ditentukan setelah saya menanyakan kenapa anda dahulu memilih Jurusan Matematika...,(Sambil Mempersilahkan Informan untuk duduk dan memberikan informan lembar pernyataan serta alat tulis)...
- I : iya,,,,, baiklah. (memegang lembar pernyataan).
- P : Mungkin dalam wawancara kali ini kita sedikit akan mengenang atau kembali kemasa lalu, bagaimana setuju...? (memberikan sedikit candaan),,,,,kalau begitu kita mulai saja wawancaranya dengan pertanyaan pertama, bagaimana menurut anda aspek promosi Jurusan Matematika, apakah anda setuju Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar dapat diketahui melalui iklan dan media massa.?
- I : Setuju, (menyilang lembar pernyataan yang telah dibagikan).
- P : Baiklah Terima kasih, kita lanjutkan ke pertanyaan yang kedua. Bagaimana menurut anda Promosi dikemas secara kreatif dan menarik dengan berisi informasi lengkap tentang jurusan matematika?
- I : Setuju, (kembali menyilang lembar pernyataan).
- P : kalau boleh tau kenapa anda setuju ?
- I : yaaaaaaaa..... karna dulu saya liat informasinya dari internet. Selain itu sebelum saya mendaftar, saya juga dapat brosur dari sepupu saya yang kebetulan anak UIN.
- P : kalau boleh tau dulu sepupunya dapat brosur dari mana?
- I : katanya sih ambil di rektorat. Dan memang benar kan kalau pendaftaran mahasiswa baru banyak brosur yang dibagi-bagikan, dan dalam brosur itu berisi penjelasan tentang fakultas dan jurusan yang ada di UIN Alauddin Makassar.

- P : iya,,,,, Baiklah, selanjutnya bagaimana menurut anda Sosialisasi Jurusan Matematika yang dilakukan disekolah-sekolah dapat menarik perhatian anda sehingga anda tertarik memilih jurusan Matematika.
- I : Tidak setuju,
- P: kenapa?
- I : karena dulu tidak ada thu yang kesekolah saya sosialisasi seperti itu....
- P : Ooooo..... Iya ? ok. Selanjutnya, apakah anda setuju kalau Memilih jurusan Matematika karena saran dari Alumni ?
- I : Setuju,,,, (menyilang lembar pernyataan)
- P : Selanjutnya,, apakah anda memilih Jurusan matematika karena Jurusan Matematika Universitas Islam Negeri Alauddin Makassar yang terakreditasi Ban-PT?
- I : Ban-PT itu apa Yha ...??? (berkerut dan bigung).
- P: Heheheh... © (tersenyum sambil menjelaskan) iya, Ban-PT itu adalah Badan Akreditasi Nasional Perguruan Tinggi. Jadi apakah dahulu anda sebelum memilih jurusan mempertimbangkan atau melihat akreditasi Jurusan, maksudnya begitu.
- I : Oooooo...Begitu yhaaa... Saya melihat akreditasinya dong !

 berarti saya setuju yha,, ? UNIVERSITAS ISLAM NEGERI
- P : iya.... ©
- P : Apakah dahulu anda sebelum kuliah anda, melihat gedung perkuliahan sehingga anda memilih jurusan matematika karena gedung yang berdesain Eropa dan mediterania.
- I : ya.. saat itu saya diajak oleh saudara sepupu saya untuk berjalan-jalan ke UIN. Saya tertarik sekali dengan gedungnya.
- P : Sekarang kita masuk aspek yang kedua, dan pertanyaan selanjutnya dalah apakah Gedung perkuliahan jurusan Matematika yang luas, nyaman, dan bersih sehingga menarik perhatian anda?

- I : Setuju.
- P : selanjutnya ,,,, apakah dalam memilih jurusan anda melihat dan mempertimbangkan keluasan, kenyamanan, keasrian, serta kebersihan Gedung perkuliahan ?
- I : setuju.
- P : Anda memilih jurusan Matematika karena Lokasi perkuliahan Jurusan Matematika yang mudah dijangkau ?
- I : Sangat Tidak setuju.
- P : Anda memilih Jurusan Matematika karena lokasi perkuliahan Jurusan Matematika yang jauh dari keramaian kota ?
- I : Tidak setuju.
- P: kenapa...??
- I : karena saya menyukai keramaian kota.
- P : Dalam memilih Jurusan, Anda melihat dan mempertimbangkan fasilitasnya yang baik, seperti memiliki Lab computer dan Perpustakaan Jurusan.
- I : Sangat Setuju.
- P: ketika memilih jurusan, anda tidak mempertimbangkan kemampuan, keahlian, serta kedisiplinan Pengajar?
- I : Sangat Tidak setuju, karena saya mempertimbangkan kedisiplinan pengajar.
- P : Anda memilih Jurusan Matematika karena senang belajar Matematika.
- I : Sangat setuju. Saya suka matematika
- P : Apakah karena ilmu matematika yang dapat diaplikasikan diberbagai bidang ilmu pengetahuan dapat menarik perhatian anda sehingga anda memilih Jurusan Matematika?
- I : Tidak Setuju.

- P: kenapa..??
- I : karena, saya hanya suka bukan karena adanya integrasi ke ilmu yang lain.
- P : Anda memilih jurusan Matematika karena Studi Matematika Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar yang diintegrasikan dengan ilmu Teknologi dan Agama Islam?
- I : Sangat Setuju.
- P : Apakah karena Prospek dunia kerja program Studi Matematika yang memiliki peluang kerja yang baik sehingga anda memilih Jurusan matemtika?
- I : saya Setuju dong!.
- P : Lulusan Jurusan Matematika yang dapat diterima diberbagai tempat kerja sehingga anda memilih Jurusan Matematika ?.
- I : Tidak setuju.
- P : Anda Memilih Jurusan Matematika karena ajakan teman dan kerabat ?
- I : Saya Setuju.
- P : Memilih Jurusan Matematika karena saran Orang Tua?
- I : Setuju.
- P : Memilih Jurusan Matematika karena Latar Belakang Orang Tua dari lulusan sarjana Sains ?

MAKASSA

UNIVERSITAS ISLAM NEGERI

- I : Tidak setuju.
- P : Anda Memilih Jurusan Matematika Fakultas Sains dan Teknologi karena tidak lulus dijurusan lain ?
- I : Setuju. Karena saya tidak Lulus di Jurusan Pendidikn Matematika.

P : Apakah Karena Biaya pendidikan yang murah sehingga anda memilih Jurusan Matematika?

I : Tidak Setuju.

P : Apakah karena Jarang terjadi tindakan kriminal seperti tauran sehingga anda memilih Jurusan matematika?

I : Sangat Setuju.

P : Baiklah terima kasih atas waktunya, Selamat beraktivitas kembali. ©

I : iya,,,,, ⊚

LAUDDIN

Lampiran II

No.	Pernyataan	SS	S	TS	STS
	Aspek Promosi dan Sosialisasi				
1.	Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam				ļ
	Negeri Alauddin Makassar dapat diketahui melalui iklan dan media				
	massa.	Į.			
2.	Promosi dikemas secara kreatif dan menarik dengan berisi informasi				
	lengkap tentang jurusan matematika.		-		
3.	Sosialisasi Jurusan Matematika yang dilakukan disekolah-sekolah dapat				
	menarik perhatian anda sehingga anda tertarik memilih jurusan				
	Matematika.				
4	Memilih jurusan Matematika karena saran dari Alumni.				
5.	Jurusan Matematika Universitas Islam Negeri Alauddin Makassar yang				
	terakreditasi Ban-PT.				
	Faktor lokasi dan gedung perkuliahan	de de			
6.	Gedung perkuliahan jurusan Matematika yang berdesain Timur Tengah		1		
	sehingga menarik perhatian.				
7.	Gedung perkuliahan jurusan Matematika yang luas, nyaman, dan bersih.				
8.	Lokasi perkuliahan Jurusan Matematika yang luas, nyaman, Asri, serta				
	rindang karena banyaknya pepohonan.				
9.	Lokasi perkuliahan Jurusan Matematika yang mudah dijangkau. NEGE	RI			
10.	Lokasi perkuliahan jurusan Matematika yang jauh dari keramaian kota				
	Faktor Fasilitas				
11.	Jurusan Matematika memiliki Lab Komputer yang memadai	R			
12.	Jurusan Matematika memiliki perpustakaan jurusan.				
13.	Pengajar yang ahli dan berkompeten dibidang studi Matematika.				
	Faktor Minat				
14	Memilih jurusan Matematika karena senang belajar Matematika	T			
15	Ilmu Matematika dapat diaplikasikan diberbagai bidang ilmu				
	pengetahuan.				
16.	Studi Matematika Jurusan Matematika Fakultas Sains dan Teknologi			1	

7:	Memilih Jurusan Matematika Fakultas Sains dan Teknologi karena tidak		
.0	Memilih Jurusan Matematika karena saran Orang Tua Latar belakang Orang Tua dari lulusan sarjana Sains.		
.6	Memilih Jurusan Matematika karena ajakan teman dan kerabat		
	Faktor Sosi al dan Ekonomi	1 1	
	Lulusan jurusan Matematika yang dapat diterima diberbagai tempat kerja		
.8			
٦.	Prospek dunia kerja program Studi Matematika yang memiliki peluang kerja yang baik.		
	Prospek dunia kerja program Studi Matematika yang memiliki peluang		

RIWAYAT HIDUP

Penulis bernama **Fifi Elpira** dengan akrab disapa Phyo atau Fhyfi. Lahir pada tanggal 10 Februari 1993 di Bonto baju, Sulawesi Selatan. Penulis yang merupakan anak pertama dari tiga bersaudara ini adalah buah hati pasangan Abd. Haris dan Ratna.

Penulis mengawali jenjang pendidikan dasarnya di SD Negeri No. 77 Bonto Baju tahun 1999 dan lulus pada tahun 2004, setelah itu melanjutkan pendidikan di SLTP Negeri No. 4 Bonto Bulaeng pada tahun 2004 sampai dengan tahun 2007, dan pada tahun yang sama penulis melanjutkan pendidikan di SMA Negeri 1 Bulukumpa dan lulus pada tahun 2010.

Melalui jalur SMPTN tahun 2010, penulis memilih jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Alauddin Makassar sebagai studi lanjut kuliahnya ke jenjang S1. Penulis menyelesaikan pendidikan Sarjananya selama kurang lebih empat tahun dan meraih gelar Sarjana Sains (S.Si) pada tahun 2014.

MAKASSAR